You are here

Electric Vehicle Battery Reuse: Preparing for a Second Life

Journal Name:

Publication Year:

DOI: 
https://doi.org/10.3926/jiem.2009
Abstract (2. Language): 
Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when their batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study analyzes different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market, EV manufacturers and environmental impact defines a possible location for battery repurposing or remanufacturing plants. Design/methodology/approach: Using the center of mass equation taking 3 parameters: electric vehicle market, manufacturers and environmental impact this study suggests a location to settle a battery repurposing plant from a logistic and environmental perspective. This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy. Findings: The study presents that Germany seems a good location to build a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita. 9% of the batteries may be send back to an EV as reposition battery, 70% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats. Finally, the remaining 20% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots. Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.
266
285

REFERENCES

References: 

Ahmadi, L., Fowler, M., Young, S.B., Fraser, R.A., Gaffney, B., & Walker, S.B. (2014). Energy efficiency of
Li-ion battery packs re-used in stationary power applications. Sustainable Energy Technologies and
Assessments, 8, 9-17. Elsevier Ltd. https://doi.org/10.1016/j.seta.2014.06.006
Akhil, A.A., Huff, G., Currier, A.B., Kaun, B.C., Rastler, D.M., Chen, S.B. et al. (2013). Electricity storage handbook.
Report SAND2013-5131. Available online at:
http://www.emnrd.state.nm.us/ECMD/RenewableEnergy/documents/SNL-Electric...
Andrew, B. (2009). Performance, charging and second use considerations for lithium batteries for plug-in
electric vehicles. The electricity storage association meeting, session on transportation and grid. Institute of
Transportation Studies. Available online at: http://escholarship.org/uc/item/2xf263qp#page-1
Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion
battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241,
680-689. Available online at: http://www.sciencedirect.com/science/article/pii/S0378775313008185 (Accessed:
November 2013)
Botzen, W., Gowdy, M., & Bergh, J. Van den. (2008). Cumulative CO2 emissions: Shifting international
responsabilities for climate debt. Climate Policy, 8(6), 569-576. Available online at:
http://www.tandfonline.com/doi/abs/10.3763/cpol.2008.0539 https://doi.org/10.3763/cpol.2008.0539
Burns, J.C. (2011). High precision coulometry as a technique for evaluating the performance and lifetime of li-ion batteries.
Dalhousie University.
Canals Casals, L., Amante García, B., & Castellà-Dagà, S. (2016). El envejecimiento de las baterías de un
vehículo eléctrico y cómo lo percibe el conductor. Dyna Ingenieria E Industria, 91(3), 188-195. Available
online at:
http://www.revistadyna.com/Articulos/Ficha.aspx?IdMenu=a5c9d895-28e0-4f9...
c0f86f2a940b&Cod=7599&Idioma=es-ES
Canals Casals, L., Martinez-Laserna, E., Amante García, B., & Nieto, N. (2016). Sustainability analysis of
the electric vehicle use in Europe for CO2 emissions reduction. Journal of Cleaner Production, 127,
425-437. https://doi.org/10.1016/j.jclepro.2016.03.120
Canals Casals, L., Schiffer-González, A., Amante García, B., & Llorca, J. (2015). PHEV battery ageing
study using voltage recovery and internal resistance from On-board data. IEEE Transactions on Vehicular
Technology, 65(6). Available online at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7169612Cready, E., Lippert, J., Pihl, J., Weinstock, I., Symons, P., & Jungst, R.G. (2003). Technical and Economic
Feasibility of Applying Used EV Batteries in Stationary Applications A Study for the DOE Energy Storage Systems
Program. Albuquerque. https://doi.org/10.2172/809607
Cruz-Gibert, H., Cruz-Zambrano, M., Canals Casals, L., Castellà-Dagà, S., & Díaz-Pinos, P. (2015).
Sunbatt: Use of a Second Life Battery System from PHEV in Stationary Applications. Smart City Expo
World Congress. Barcelona. Available online at: http://www.smartcityexpo.com/
Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: a battery of choices.
Science (New York, N.Y.), 334(6058), 928-35. Avalable online at: http://www.ncbi.nlm.nih.gov/pubmed/22096188
(Accessed: February 2014)
Fernández-Reyes, R. (2014). El objetivo cimático por debajo de 2oC en el diario el país. Prismasocial, (12),
436-473. Available online at:
http://www.isdfundacion.org/publicaciones/revista/numeros/12/secciones/t...
473.pdf
Gil-Agusti, M., Zubizarreta, L., Fuster, V., & Quijano, A. (2014). Baterias: Estado actual y futuras
tendéncias (1a parte). DYNA Ingeniería e Industria, 89(6), 584-589. Available online at:
http://www.revistadyna.com/busqueda/baterias-estado-actual-y-futuras-ten...
Gohla-Neudecker, B., Bowler, M., & Mohr, S. (2015). Battery 2nd life: Leveraging the sustainability
potential of EVs and renewable energy grid integration. 5th International Conference on Clean Electrical
Power: Renewable Energy Resources Impact, ICCEP (311-318).
Guenther, C., Schott, B., Hennings, W., Waldowski, P., & Danzer, M.A. (2013). Model-based investigation
of electric vehicle battery aging by means of vehicle-to-grid scenario simulations. Journal of Power Sources,
239, 604-610. Available online at: http://www.sciencedirect.com/science/article/pii/S0378775313003066
(Accessed: November 2013)
Gyuk, I., Jonson, M., Vetrano, J., Lynn, K., Parks, W., Handa, R. et al. (2013). Grid Energy Storage.
Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, D.J. et al. (2013).
Assessing “dangerous climate change”: required reduction of carbon emissions to protect young
people, future generations and nature. PloS one, 8(12), e81648. Public Library of Science.
https://doi.org/10.1371/journal.pone.0081648
Heil, M.T. (1997). Inequality in CO2 emissions between poor and rich countries. The Journal of
Environment Development, 6(4), 426-452. Available online at: http://jed.sagepub.com/content/6/4/426.short
https://doi.org/10.1177/107049659700600404Heiskanen, J., Kaila, J., Vanhanen, H., Pynnönen, H., & Silvennoinen, A. (2013). A look at the European
Union’s End-of-Life Vehicle Directive-Challenges of treatment and disposal in Finland. 2nd International
Conference on Final Sinks.
IEA. (2013). Energy Policy Highlights. Available online at:
https://www.iea.org/publications/freepublications/publication/name,43515... l
Jiao, N., & Evans, S. (2016). Business Models for Sustainability: The Case of Second-life Electric Vehicle
Batteries. Procedia CIRP, 40, 250-255). Elsevier B.V. Available online at:
http://www.sciencedirect.com/science/article/pii/S2212827116001293
Keeli, A., & Sharma, R.K. (2012). Optimal use of second life battery for peak load management and
improving the life of the battery. 2012 IEEE International Electric Vehicle Conference (pp. 1-6). Greenville,
SC: IEEE. Available online at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6183276
Lymperopoulos, N. (2014). Commercialization of Energy Storage in Europe. Available online at:
http://www.energystorageforum.com/europe/free-white-paper
Martinez-Laserna, E., Sarasketa-Zabala, E., Stroe, D., Swierczynski, M., Warnecke, A., Timmermans, J.M.
et al. (2016). Evaluation of Lithium-ion Battery Second Life Performance and Degradation. IEEE
Energy Conversion Congress and Expo. Milwakee.
Muenzel, V., & Mareels, I. (2015). PV Generation and Demand Mismatch : Evaluating the Potential of
Residential Storage. IEEE PES ISGT. Washington. Available online at: http://ieee-isgt.org/
Müller, D.B., Cao, J., Kongar, E., Altonji, M., Weiner, P.-H., & Graedel, T.E. (2007). Service Lifetimes of
Mineral End Uses. Minerals Resources External Research Program.
Neubauer, J., Simpson, M., Neubauer, J., & Simpson, M. (2015). Deployment of Behind The Meter Energy
Storage for Demand Charge Reduction.
Oguchi, M., & Fuse, M. (2015). Regional and longitudinal estimation of product lifespan distribution: A
case study for automobiles and a simplified estimation method. Environmental Science and Technology, 49(3),
1738-1743. https://doi.org/10.1021/es505245q
Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., & Christ, R. (2014). Climate Change 2014
Synthesis Report. Available online at: http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full.pdf
Rastler, D. (2010). Electricity Energy Storage Technology Options.
Saxena, S., Le Floch, C., Macdonald, J., & Moura, S. (2015). Quantifying EV battery end-of-life through
analysis of travel needs with vehicle powertrain models. Journal of Power Sources, 282, 265-276. Elsevier
B.V. https://doi.org/10.1016/j.jpowsour.2015.01.072Schewe, J., Levermann, A., & Meinshausen, M. (2010). Climate change under a scenario near 1.5oC of
global warming: Monsoon intensification, ocean warming and steric sea level rise. Earth System Dynamics,
1(1), 25-35.
Sierzchula, W., Bakker, S., Maat, K., & Van Wee, B. (2014). The influence of financial incentives and other
socio-economic factors on electric vehicle adoption. Energy Policy, 68, 183-194. Elsevier.
https://doi.org/10.1016/j.enpol.2014.01.043
Smith, K., Earleywine, M., Wood, E., Neubauer, J., & Pesaran, A. (2012). Comparison of Plug-In Hybrid
Electric Vehicle Battery Life Across Geographies and Drive Cycles. 2012 SAE World Congress and
Exhibition. Available online at: http://papers.sae.org/2012-01-0666/
Tong, S.J., Same, A., Kootstra, M.A., & Park, J.W. (2013). Off-grid photovoltaic vehicle charge using
second life lithium batteries: An experimental and numerical investigation. Applied Energy, 104, 740-750.
Available online at: http://linkinghub.elsevier.com/retrieve/pii/S0306261912008495 (Accessed: January 2014)
UNFCCC. (2015). Paris Agreement (1-16). Available online at: http://unfccc.int/paris_agreement/items/9485.php
Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., & Wohlfahrt-Mehrens, M. (2014). Temperature
dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. Journal of Power Sources,
262, 129-135. Elsevier B.V. Available online at: http://linkinghub.elsevier.com/retrieve/pii/S0378775314004352
(Accessed: July 2014)
Williard, N., Tsui, K.-L., & Pecht, M. (2011). A comparative review of prognostics-based reliability
methods for Lithium batteries. 2011 Prognostics and System Health Managment Confernece, 1-6. IEEE.
Available online at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5939585
Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. Journal of
Power Sources, 196(15), 6007-6014. Elsevier B.V. Available online at:
http://linkinghub.elsevier.com/retrieve/pii/S0378775311007865 (Accessed: November 2013)

Thank you for copying data from http://www.arastirmax.com