Buradasınız

EĞİLME MOMENTİ, EKSENEL GERİLME VE İÇ BASINÇ ALTINDAKİ MERKEZİ ÇATLAKLI SİLİNDİRİK BORULARIN GERİLME YOĞUNLUK FAKTÖRÜ

STRESS INTENSITY FACTOR FOR CENTER CRACKS IN CYLINDRICAL PIPES UNDER BENDING MOMENT, AXIAL STRESS AND INTERNAL PRESSURE

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study; the stress intensity factor was computed for a cylindrical object that was under effect of bending moment, axial stress and internal pressure. In order to make the calculations easy, the stress intensity factor was calculated individually for bending moment, axial stress and internal pressure. Then, the result were superimposed to have a final stress intensity factor for the concerned object. The calculated stress intensity factor is known as Mode I, which corresponds to "opening mode". Furthermore, it was assumed that there were some initial radial cracks around the center line for a given object and the amount of change on the stress intensity factor was discussed.
Abstract (Original Language): 
Bu çalışmada; iç basınç etkisindeki silindirik bir numunenin eksenel gerilme ve eğilme momentine maruz kalması durumunda, numunenin sahip olacağı gerilme yoğunluk faktörü hesaplanmıştır. Bu nedenle numuneye etkiyen eğilme momenti, eksenel gerilme ve iç basınç gibi faktörler ayrı ayrı hesaplanarak superpoze edilmiştir. Silindirik numune için belirlenen gerilme yoğunluk faktörü Mod I diye bilinen açılma modu içindir. Silindirik numunenin merkezinde çevresel olarak belirli açılarda çatlaklar olduğu düşünülerek hangi açıda, nasıl ve ne kadar bir etkinin olduğu tartışılmıştır.
343
346

REFERENCES

References: 

Anderson, T. L. 1991. Fracture Mechnanics Fundamentals and Applications, 1. Basım, CRC Press, Florida, 793.
Bazant, Z. P.
1990
. Justifications and improvement of Kienzler and Hermann Estimate of Stress İntensity Factors of Cracked Beams, Engineering Fracture Mechanics, (36), 523-525.
Herman, G., Gao, H. 1992. On Estimates of Stress İntensity Factors for Cracked Beams and Pipes, Engineering Fracture Mechanics, (41), 695-706.
John, R. 1997. Stress İntensity Factor and Compliance Solutions for an Eccentrically Loaded Single Edge Cracked Geometry, Engineering Fracture Mechanics, 58 (1/2), 87-96.
Newman, J. C., Raju, I. S. 1981. An Emprical Stress intensity Factor Equation for The Surface Crack, Engineering Fracture Mechanics, 15 (1/2), 185-192.
Qi-Zhi, W., Jinqiu, C. 1998. Two General Equations for Deriving SIF Expressions of Some Axisymmetric Finite Domain Problems, Engineering Fracture Mechanics, (61), 619-634.
Sanders, J. L. 1983. Circumferential Through-Cracks in Cylindirical Shells Under Combined Bending and Tension, Journal of Applied
Mechanics, (50), 221-235.

Thank you for copying data from http://www.arastirmax.com