Alpaydın, E.
2004
. Introduction to Machine Learning. The MIT Press, 5 Cambridge Center, Cambridge, MA 02142, USA.
Affendey, L. S., Paris, I. H. M., Mustapha, N., Sulaiman, N. and Muda, Z. 2010. Ranking of Influencing Factors in Predicting Students' Academic Performance. Information Technology Journal. 9 (4), 832-837.
Ayık, Y. Z., Özdemir, A. ve Yavuz, U. 2007. Lise Türü ve Mezuniyet Başarısının Kazanılan Fakülte İle İlişkisinin Veri Madenciliği Tekniği İle Analizi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. 10 (2), 441-454.
Bamforth, S., Robinson, C. L., Croft, T. and Crawford, A. 2007. Retention and Progression of Engineering Students with Diverse Mathematical Backgrounds. Teaching Mathematics and its Applications. 26 (4), 156¬166, 2007.
Bozkır, A. S, Sezen, E. ve Gök, B. 2009. Öğrenci Seçme Sınavında Öğrenci Başarımını Etkileyen Faktörlerin Veri Madenciliği Yöntemleriyle Tespiti. 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS'09), 13-15 Mayıs 2009, Karabük, Türkiye.
Britton, S., Daners, D. and Stewart, M. 2007. A self-assessment test for incoming students. International Journal of Mathematical Education in Science and Technology. 38 (7), 861-868.
Broadbridge, P. and Henderson, S. 2008. Mathematics
Educatio
n for 21st Century Engineering Students-Final Report. Australian Mathematical Sciences Institute, Melbourne.
Bryman, A. 2008. Social Research Methods. Oxford University Press. Oxford.
Pamukkale University, Journal of Engineering Sciences, Vol. 17, No. 2, 2011
94
Mühendislik Öğrencilerinin Matematik I Derslerindeki Başarısının Destek Vektör Makineleri Kullanılarak Tahmin
Burbidge, R. and Buxton, B. 2001. An Introduction to Support Vector Machines for Data Mining. Technical Report. http://www.cs.ucl.ac.uk /staff/r.burbidge/pubs/ yor12-svm-intro.html.
Choudhury, I.2002. Predicting Student Performance Using Multiple Regression. Prooceedings of the 2002 ASEE Gulf-Southwest Annual Conference.
Crawford, M. and Schmidt, K. J. 2004. Lessons Learned from a K-12 Project Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition, American Society for Engineering Education, Washington.
Crowther K, Thompson, D. and Cullingford, C. 1997. Engineering degree students are deficient in mathematical expertise-why? International Journal of Mathematical Education Science and Technology. 28 (6),
785-792.
Cuthbert, R.. and MacGrillivray, H. 2007. Investigation of Completion Rates of Engineering Students. Proceedings 6th Southern Hemisphere conference on Mathematics and Statistics Teaching and Learning. 35-41, El Calafate.
Çetin, N. ve Mahir, N. 2006. Genel Matematik Dersindeki Öğrenci Başarısı İle ÖSS Başarısı Arasındaki İlişki, İnönü Üniversitesi Eğitim Fakültesi Dergisi. 7 (11), 37-46.
DeBerard, S. M., Julka, D. L. and Spielmans, G. I. 2004. Predictors of academic achievement and retention among college freshmen: A logitudinal study. College Student Journal. (38), 66-85.
Engineering Council, Measuring the Mathematics Problem. Engineering Council, London, 2000.
Evans W., Flower, J. and Holton, D. 2001. Peer tutoring
i
n first-year undergraduate mathematics. International Journal of Mathematical Education in Science and Technology. 32 (2), 161-173.
Fayowski, V., Hyndman, J. and MacMillan, P. D. 2009. Assessment on Previous Course Work in Calculus and Subsequent Achievement in Calculus at the Post-Secondary Level. Canadian Journal of Science, Mathematics and Technology Education. 9 (1), 49-57.
Fayowski, V. and MacMillan, P. D. 2008. An evaluation of the supplemantal instruction programme in a first year calculus course. International Journal of Mathematical Education in Science and Technology. 39 (7), 843-855.
Fuller, M. 2002. The role of mathematics learning centres in engineering education. European Journal of Engineering Education. 27 (3), 241 -247.
Goh, K. S., Chang, E. and Cheng, K. T. 2001. SVM Binary Classifier Ensembles for Image Classification, CIKM'01, 5-10 November 2001, Atlanta, GA, USA. pp. 395-402.
Gülçe, G. 2010. Veri Ambarı ve Veri Madenciliği Teknikleri Kullanılarak Öğrenci Karar Destek Sistemi Oluşturma. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi.
Hirsh, C. A., Williamson, S. L. and Bishop, P. 2003. Supporting Mathematics Education in UK Engineering Departments. LTSN Maths TEAM, LTSN Engineering and LTSN Maths, Stats & OR Network.
Kent, P. and Noss, R. 2003. Mathematics in the University Education of Engineers. A Report to the Ove Arup Foundation. The Ove Arup Foundation, London.
Kim, H., Pang, S., Je, H., Kim, D. and Bang, S. Y. 2003.
Constructing support vector machine ensemble. Pattern Recognition Field. 36, 2757-2767.
Klingbeil, N., Mercer, R., Rattan, K., Raymon, M. and Reynolds, D. 2005. Work in Progress - The WSU Model for Engineering Mathematics Education. 35th ASEE / IEEE Frontiers in Education Conference. Session F3C, Indianapolis.
Kovacic, Z. J. 2010. Early Prediction of Student Success: Mining Students Enrolment Data. Proceedings of Informing Science and IT Education Conference (InSITE)
2010.
Lee, S., Harrison, M., Pell, G. and Robinson, C. 2008. Predicting Performance of First Year Engineering Students and the Importance of Assessment Tools Therein. Engineerin Education. 3 (1), 44-51.
Lu, W., Wang, W., Leung, A., Lo, S., Yuen, R., Xu, Z. and Fan., H. 2002. Air Pollutant Parameter Forecasting Using Support Vector Machines. IJCNN <02, Proceedings of the 2002 International Joint Conference on Neural Networks. 1, 630-635.
McGrath, M. and Braunstein, A. 1997. The prediction of freshmen attrition. College Student Journal. 31, 396-408.
Mittag, K. C. and Collins, L. B. 2000. Relating Calculus I Reform Experience to Performance in Traditional Calculus II. PRIMUS. 10 (1), 82-94.
Oladokun, V.O., Adebanjo, A.T. and Charles-Owaba O.E. 2008. Predicting Students Academic Performance using Artificial Neural Network: A Case Study of an Engineering Course. The Pacific Journal of Science and Technology. 9
(1) 72-79.
Özçınar, H. 2006. KPSS Sonuçlarının Veri Madenciliği Yöntemleriyle Tahmin Edilmesi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi.
Pugh, C. M.
an
d Lowther, S. 2004. College Math Performance and Last High School Math Course, Annual conference of the southern Association for Institutional Research, Biloxi, Mississippi. October 18, 2004.
Sarantakos, S. 2005. Social Research. Palgrave McMillan,
N.Y.
Shen, J., Pei, Z. J. and Lee, E. S. 2004. Support Vector Regression in the Analysis of Soft-Pad Grinding of Wire-Sawn Silicon Wafers. CITSA 2004/ISAS 2004, International Conference on Cybernetics and Information Technologies, Systems and Applications/ The 10th International Conference on Information Systems Analysis and Synthesis, (2004), 19-24.
Pamukkale
Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 17, Sayı 2, 2011
95
N.
Güner, E. Çomak
Suykens, J. A. K. and Vandewalle, J. 1999. Least squares support vector machine classifiers. Neural processing letters. 9 (3), 293-300.
Tsujinishi, D. and Abe, S. 2003. Fuzzy least squares support vector machines for multi-class problems. Neural networks field, Elsevier. (16), 785-792.
Vandamme, J. P., Meskens, N. and Superby, J. F. 2007. Predicting Academic Performance by Data Mining Methods. Education Economics. 15 (4), 405-419.
Vapnik, V. 1995. The Nature of Statistical Learning Theory. Springer, New York.
Wilhite, P., Windham, B. and Munday, R. 1998. Predictive Effects of High School Calculus and Other Variables on Achievement in a First-Semester College Calculus Course. College Student Journal. 32 (4), 610-617.
Thank you for copying data from http://www.arastirmax.com