Buradasınız

GAZ TÜRBİNİ KANATLARI KANALLARINDA SOĞUTMA PERFORMANSININ ARAŞTIRILMASI

INVESTIGATION OF COOLING PERFORMANCES AT THE GAS TURBINE BLADE CHANNEL

Journal Name:

Publication Year:

Abstract (2. Language): 
The cooling of the turbine blades in different parts of the turbine is carried out using different cooling techniques. Approximately 20% of the air produced in compressors is used in cooling systems. The air is sent into the wing through the internal channels. It travels through the outer profile of the wing and is vented through the far edge of the wing. The cooling process is then completed. Among the applied cooling techniques are internal cooling, surface air film forming, and jet impingement cooling techniques. Sometimes U-shaped cooling channels are utilized for internal cooling to take place in the wing. An attempt to increase the cooling performance has been made with the utilization of wings (rips) at various angles. The change in the Nu number and the heat transfer coefficient on the channel surface as well as the impact of positioning 90° and 45° blades on a U-shaped 180° smooth (straight) channel on the cooling performance for three different Reynolds numbers (22000, 27500 and 33000) has been investigated experimentally using the method of liquid crystal thermography. The effect of the jet geometry, impact of the Reynolds number, velocity distribution within channels, and the heat transfer coefficient distributions are shown in the results.
Abstract (Original Language): 
Türbin kanatlarının soğutulması farklı bölgelerinde farklı soğutma teknikleri kullanarak yapılmaktadır. Kompresörde üretilen havanın yaklaşık %20’si soğutma sistemlerinde kullanılmaktadır. Kanat içine gönderilen bu hava önce iç kanallardan daha sonrada kanat dış profili üzerinden ve kanat uç kısmından dışarıya atılarak soğutma gerçekleştirilir. Bu soğutma tekniklerinin iç soğutma ve yüzeyde hava filmi meydana getirme ve çarpmalı jetle soğutma teknikleri uygulanmaktadır. Kanatta iç soğutma yapılması için bazen U şeklinde soğutma kanalları kullanılmaktadır. Bu kanallarda çeşitli açılarda kanatçıklar (ripler) kullanılarak soğutma performansları arttırılmaya çalışılmaktadır. Bu çalışmada U şeklindeki 180° dönüşlü düz bir kanalın ve alt ve üst yüzeylerine 90° ve 45° yerleştirilen kanatçıkların yerleştirildiği kanallardaki soğutma performansına etkisi 3 farklı Reynolds sayısı (22000, 27500 ve 33000) için deneysel olarak sıvı kristal termografisi metoduyla kanal yüzeyindeki ısı geçiş katsayısı ve Nu sayısının değişimi araştırılmıştır. Elde edilen sonuçlar jet geometrisinin etkisi, Reynolds sayısının etkisi, kanal içindeki hız dağılımı ve ısı geçiş katsayısı dağılımları gösterilmiştir.
27
34

REFERENCES

References: 

[1] Uysal, U., Li, P.-W., Chyu, M.K., Cunha, F.J.,
(2006), "Heat Transfer on Internal Surfaces of A Duct
Subjected To Impingement of A Jet Array with
Varying Jet Hole-Size and Spacing", Journal of
Turbomachinery, 128,158-165
[2] Han, J. C., ve Park, J. S., (1988), “Developing
Heat Transfer in Rectangular Channels with Rib
Turbulators”, International Journal Heat Mass
Transfer, 31, 1,183-195.
[3] Han, J. C., (1984), “Heat Transfer and Friction
on Channels with Two Opposite Rib-Roughened
Walls”, ASME Journal Heat Transfer,106,774-781.
[4] Han, J.C., Ou S., Park, J.S., ve Lei, C.K.,
(1989), “Augmented Heat Transfer in Rectangular
Channels of Narrow Aspect Ratios with Rib
Turbulators”, International Journal Heat Mass
Transfer, 32,1619-1630.
[5] Han J.C., Zhang Y.M., ve Lee C.P., (1991),
“Augmented Heat Transfer in Square Channels with
Parallel, Crossed, and V-Shaped Angled Ribs”, ASME
Journal Heat Transfer, 113,590-596.
[6] Han, J.C., ve Zhang, Y.M., (1992), “High
Performance Heat Transfer Ducts with Parallel,
Broken, and V-Shaped Ribs”, International Journal
Heat Mass Transfer, 35,513-523.
[7] Taslim, M.E., ve Wadsworth, C.M, (1997),
“An Experimental Investigation of The Rib Surface-
Averaged Heat Transfer Coefficient in A Rib-
Roughened Square Passage”, ASME Journal
Turbomachinery, 119,381-389.
[8] Taslim, M.E., Li T., ve Spring, S.D., (1995),
“Experimental Study of The Effects of Bleed Holes on
Heat Transfer and Pressure Drop in Trapezoidal
Passages with Tapered Turbulators”, ASME Journal
Turbomachinery, 117,281-290.
[9] Chandra, P.R., Niland, M.E., and Han J.C.,
(1997), “Turbulent Flow Heat Transfer And Friction
in A Rectangular Channel with Varying Number of
Ribbed Walls”, ASME Journal Turbomachinery,
119,374-380.
[10] Wang, L., ve Sunden, B., (2005),
“Experimental Investigation of Local Heat Transfer in
A Square Duct with Continuous and Truncated Ribs”,
Journal Experimental Heat Transfer, 18,179-197.
[11] Tanda, G., ve Cavallero, D., (2001), “An
Experimental Investigation of Forced Convection
Heat Transfer in Channel with Rib Turbulators By
Mean of Liquid Crystal Thermography”,
Experimental Thermal Fluid Science, 26,15-121.
[12] Johnson, R. W., ve Launder, B. E., (1985),
“Local Nusselt Number and Temperature Field in
Turbulent Flow Through A Heated Square- Sectioned
U Bend”, International Journal Heat Fluid Flow,
6,171-180.
[13] Chyu, M.K., (1991), “Regional Heat Transfer
in Two-Pass and Three- Pass Passages with 180°
Sharp Turns”, ASME Journal Heat Transfer, 113,63-
70.
Kanal geçiş parçası yan
duvarından kanal duvarına doğru
hareketin gösterimi
Gaz Türbini Kanatları Kanallarında Soğutma Performansının Araştırılması
UYSAL, KORKMAZ, SÖZBİR, HIRCA
34
[14] Ekkad, S. V., Huang, Y., ve Han, J.C., (1998),
“Detailed Heat Transfer Distributions in Two-Pass
Square Channels with Rib Turbulators and Bleed
Holes”, International Journal Heat Mass Transfer, 41,
3781-3791.
[15] Mochizuki, S., Murata, A., Shibata, R., ve
Yang, W.J., (1999), “Detailed Measurements of Local
Heat Transfer Coefficients in Turbulent Flow Through
Smooth and Rib-Roughened Serpentine Passages with
A 180° Sharp Bend”, International Journal Heat Mass
Transfer, 42,1925-1934.
[16] Astarita, T., ve Cardone, G., (2000),
“Thermofluidynamic Analysis of The Flow Near A
Sharp 180° Turn Channel”, Experimental Thermal
Fluid Science, 20,188-200.
[17] Astarita, T., Cardone, G., ve Carlomagno, G.
M., (2002), “Convective Heat Transfer in Ribbed
Channels with A 180° Turn”, Experiments in Fluids,
33,90-100.
[18] Algawair, W., Iacovides, H., Kounadis, D., ve
Xu, Z., (2007), “Experimental Assessment of The
Effects of Prandtl Number and of A Guide Vane on
The Thermal Development in A Ribbed Square-Ended
U-Bend”, Experimental Thermal Fluid Science,
32,670-681.
[19] Salameh, T., Sunden, B., (2010), “An
Experimental Study of Heat Transfer and Pressure
Drop on The Bend Surface of A U-Duct”, ASME
GT2010-22139, in Proceedings of ASME Turbo Expo
(2010): Power for Land, Sea and Air GT2010,
Glasgow, UK.
[20] Chyu, M. K., Ding, H., Downs, J. P., ve
Soechting, F. O., (1998), “Determination of Local
Heat Transfer Coefficient Based on Bulk Mean
Temperature Using a Transient Liquid Crystals
Techniques,” Exp. Therm. Fluid Sci., 18,142–149.
[21] Van Treuren, K. W., Wang, Z., Ireland, P. T.,
ve Jones, T. V., (1993), “Detailed Measurements of
Local Heat Transfer Coefficient and Adiabatic Wall
Temperature Beneath an Array of Impinging Jets,”
ASME J. Turbomach., 16,369–371.
[22] Kline, S. J., ve McClintock, F. A., (1953),
“Describing Uncertainties in Single- Sample
Experiments,” Mech. Eng. Am. Soc., 75,3–8.

Thank you for copying data from http://www.arastirmax.com