Buradasınız

İKİ BOYUTLU KANAT PROFİLİ TASARIMINDA GEOMETRİ TEMSİL YÖNTEMİNİN TİTREŞİMLİ GENETİK ALGORİTMA ÜZERİNE ETKİLERİ

REPRESENTATION METHOD EFFECTS ON VIBRATIONAL GENETIC ALGORITHM IN 2-D AIRFOIL DESIGN

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this article, two different curve representation methods; Parsec and Bezier representation methods are tested via vibrational genetic algorithm [VGA] to show the effect of representation method on search type optimization process in 2-D airfoil design. From the results obtained, it is concluded that Parsec method has a better performance in subsonic flow conditions within the inverse design problem. On the other hand, it is also concluded that Bezier representation method is more efficient than Parsec in transonic flow regime.
Abstract (Original Language): 
Bu makalede iki boyutlu kanat tasarımı dahilinde kanat profil geometrisi temsil yönteminin optimizasyon sürecine etkileri test edilmiştir. Temsil yöntemleri olarak Parsec formülasyonu ve Bezier parametrik eğri yaklaşımı, optimizasyon yöntemi olarak ise reel kodlu titreşimli genetic algoritma dikkate alınmıştır. Yapılan çalışma sonucu Parsec yönteminin ses altı akış şartlarında tersten tasarım probleminde daha kısa sürede optimizasyona imkan sağladığı,buna karşılık Bezier parametrik eğri yönteminin ise ses civarı akış şartlarında daha çabuk yakınsamaya olanak verdiği gözlemlenmiştir.
7
13

REFERENCES

References: 

[1] Sobieczky H., Parametric Airfoils and Wings,
in: Notes on Numerical Fluid Mechanics, pp.71-88,
Vieweg, 1998.
Representation Method Effects on Vibrational Genetic Algorithm in 2-D Airfoil Design
PEHLİVANOĞLU
13
[2] Wu H-Y., Yang S., Liu F., and Tsai H-M,
Comparison of Three Geometric Representations of
Airfoils for Aerodynamic Optimization, AIAA 2003–
4095,16th AIAA Computational Fluid Dynamics
Conference June 23–26, 2003.
[3] Farin G., Curves and Surfaces for Computer
Aided Geometric Design; A practical Guide,
Academic Press, Inc., p. XVI, 1993.
[4] Rogers F. D., “An Introduction to NURBS with
Historical Perspective”, USA, p. 10, 2001.
[5] Klein M., Sobieczky H., Sensitivity of
Aerodynamic Optimization to Parameterized Target
Functions, Proc. Int. Symp. On Inverse Problems an
Engineering Mechanics, Japan, 2001.
[6] von Doenhoff E. A., Abbott H. I., “Theory of
Wing Sections”, Dover Publications, Inc., p. 111-115,
1959.
[7] Nemec M., Optimal Shape Design Of
Aerodynamic Configurations: A Newton-Krylov
Approach, A thesis for the degree of Doctor of
Philosophy, Toronto, 2003.
[8] Chang I-C., Torres F. C., and Tung C.,
Geometric Analysis of Wing Sections, NASA
Technical Memorandum 110346, 1995.
[9] Hajek J., Parameterization of Airfoils and Its
Application in Aerodynamic Optimization, WDS'07
Proceedings of Contributed Papers, Part I, p. 233–240,
2007.
[10] Wu H-Y., Yang S., Liu F., and Tsai H-M,
Comparison of Three Geometric Representations of
Airfoils for Aerodynamic Optimization, AIAA 2003–
4095,16th AIAA Computational Fluid Dynamics
Conference June 23–26, 2003.
[11] Mousavi A., Castonguay P., Nadarajah S. K,
Survey Of Shape Parameterization Techniques and its
Effect on 3-Dimensional Aerodynamic Shape
Optimization, AIAA document.
[12] Baysal O., Eleshaky M., Aerodynamic Design
Optimization Using Sensitivity Analysis and
Computational Fluid Dynamics, AIAA Journal, Vol.
30, No 3, p. 718-725, 1992.
[13] Vanderplaats, G. N., Numerical Optimization
Techniques for Engineering Design. McGraw-Hill
Book Company, New York, 1984.
[14] Holland J. H., Adaptation in Natural and
Artificial Systems, the University of Michigan Press,
p. 21-22, 1975.
[15] Shahrokhi A., Jahangirian A., Airfoil shape
parameterization for optimum Navier–Stokes design
with genetic algorithm, Aerospace Science and
Technology 11 [2007] 443–450.
[16] Song W., and Keane A. J., A Study of Shape
Parameterization Methods for Airfoil Optimization,
10th AIAA Multidisciplinary Analysis and
Optimization Conference, Albany, New York, AIAA
2004-4482, 2004.
[17] Hacioglu A., Using Genetic Algorithm in
Aerodynamic Design and Optimization, Ph. D. Thesis,
Technical University of Istanbul, 2003.
[18] Vatandas E., Hacioglu A., Ozkol I., Vibrational
Genetic Algorithm (VGA) and Dynamic Mesh in the
Optimization of 3D Wing Geometries, Inverse
Problems in Science and Engineering, Vol.15, No. 6,
p. 643-657, 2007.
[19] Pehlivanoglu Y. V., Baysal O., and Hacioglu
A., Path planning for autonomous UAV via VGA,
Aircraft Engineering and Aerospace Technology: An
International Journal, Volume 79 · Number 4 · 2007 ·
352–359.

Thank you for copying data from http://www.arastirmax.com