Buradasınız

TOZ METALURJİSİ YÖNTEMİYLE ÜRETİLEN AlSi7 KÖPÜKLERİN DÜŞÜK HIZLI DARBE ENERJİLERİ ALTINDA PENETRASYON DAVRANIŞININ İNCELENMESİ

INVESTIGATION OF THE PENETRATION BEHAVIOR OF AlSi7 FOAM, PRODUCED BY POWDER METALLURGY METHOD, UNDER LOW-VELOCITY IMPACT ENERGIES

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, the impact behaviors of AlSi7 foams under low-velocity impact energies were investigated. The low-velocity impacts (1,2 - 3 ms-1) were applied to the samples with 55x55x20 mm dimensions using the weight drop test machine. The impact tests were performed until perforation took place on a sample and so penetration and perforation impact behavior were analyzed. The changes in the internal structures of the samples after the impact were observed in the macro level.
Abstract (Original Language): 
Bu çalışmada AlSi7 köpüklerin düşük hızlı darbe enerjileri altındaki penetrasyon davranışları incelenmiştir. Bu amaçla toz metalurjisi yöntemi ile üretilen 55x55x20 mm boyutlarında Al köpüklere ağırlık düşürme test cihazı kullanarak farklı hızlarda (1,2 - 3 ms-1) darbeler uygulanmıştır. Bir numune üzerinde delinme meydana gelene kadar yapılan darbe testleri ile saplanma ve delinme darbe davranışları incelenmiştir. Darbe sonrası numunelerin içyapılarında meydana gelen değişiklikler makro boyutta incelenmiştir.
395
400

REFERENCES

References: 

1. Gibson, L.J., Ashby, M.F., ‘‘Cellular solids,
structure and properties (2nd)’’, Cambridge
University Press, Cambridge (1997).
2. Çinici, H., “ Toz Toz Metalurjisi Yöntemi İle Al
Esaslı Parçacık Takviyeli Sandviç Metalik
Köpük Üretimi Ve Mekanik Özelliklerinin
Araştırılması” Doktora Tezi, Gazi Üniversitesi
Fen Bilimleri Enstitüsü, Ankara, 43-44 (2012).
3. Banhart, J., “Properties and applications for
cast aluminium sponges”, Adv. Eng. Mat., 2:
168 (2000).
4. Evans, A.G., Hutchinson, J.W., Ashby, M.F.,
‘‘Multifunctionality of cellular metal systems’’,
Prog. Mater. Sci., 43, 171-221, (1999).
5. Andrews, E.W., Gioux, G., Onck, P., Gibson,
L.J., ‘‘Size effects in ductile cellular solids. Part
II: experimental results’’, Int. J. Mech. Sci., 43,
701-713, (2001).
6. Paul, A., Ramamurty, U., ‘‘Strain rate sensitivity
of a closed-cell aluminum foam’’, Mater. Sci.
Eng. A, 281, 1-7, (2000).
7. Paul, A., Seshachryulu, T., Ramaurty, U.,
‘‘Tensile strength of a closed-cell al foam in the
presence of notches and holes’’, Scripta Mater.,
40, 809-814, (1999).
8. Olurin, O.B., Fleck, F.A., Ashby, M.F.,‘‘
Indentation resistance of an aluminum foam’’,
Scripta Mater., 43 983–989 (2000).
9. Destefanis, R., Schafer, F., Lambert, M., Faraud,
M., Schneider, E., “Enhanced Space Debris
Shields for Manned Spacecraft”, International
Journal of Impact Engineering 29, 215-226
(2003).
10. Zhu, F., Zhao, L., Lu, G., Gad, E., “A numerical
simulation of the blast impact of square metallic
sandwich panels”, International Journal of
Impact Engineering 36, 687-699 (2009).
11. Hou, W., Zhu, F., Lu, G., Fang, D., “Ballistic
impact experiments of metallic sandwich panels
with aluminum foam core”, International
Journal of Impact Engineering 37, 1045-1055
(2010).
12. Kádár, Cs., Maire, E., Borbély, A., Peix, G.,
Lendvai, J., Rajkovits, Zs.,‘‘ X-ray tomography
and finite element simulation of the indentation
behavior of metal foams’’, Materials Science
and Engineering A, 387–389, 321–325 (2004).
13. Ramachandra, S., Sudheer, P., Ramamurty, U.,
‘‘Impact energy absorption in an Al foam at low
velocities’’, Scripta Materialia, 49, 741–745,
(2003).
14. Li, Q.M., Maharaj, R.N., Reid, S.R.,
‘‘Penetration resistance of aluminum foam’’,
International Journal of Vehicle Design, 37
(2/3), 175–183, (2005).
15. Lua, G., Shena, J., Houa, W., Ruana, D., Ong,
L.S., ‘‘Dynamic indentation and penetration of
aluminium foams’’, International Journal of
Mechanical Sciences, 50, 932–943 (2008).
16. Sudheer Kumar, P., Ramachandra, S.,
Ramamurty, U., ‘‘Effect of displacement-rate on
the indentation behavior of an aluminum foam’’,
Materials Science and Engineering A, 347,
330-337, (2003).
17. Peroni, M., Solomons, G., Pizzinato, V., “Impact
behavior testing of aluminium foam”,
International Journal of Impact Engineering 53,
74-83 (2013).
18. Gökmen, U., Türker, M., “Al2O3 İlavesinin
Alüminyum Ve Alumix 231 Esaslı Metalik
Köpüğün Köpürme Özelliklerine Etkisi”,
Journal of the Faculty of Engineering and
Architecture of Gazi University Vol 27, No 3,
651-658, (2012).
19. Uzun, A., Gökmen, U., Türker, M.,‘‘Toz
Metalurjisi Yöntemi İle Üretilen Alüminyum
Esaslı Metalik Köpükte Si İlavesinin
Köpürmeye Etkisi’’, 5th International
Advanced Technologies Symposium
(IATS’09), 1003-1006, Karabük, Turkey, 2009.
20. http://www.instron.com/wa/library/StreamFile.a
spx?doc=851
21. Yu, C.J., Eifert, H., Baumeister, J., Banhart, J.,
“Metal foaming by a powder metallurgy method:
production, properties and applications”, Mat.
Res. Innovat, 2: 181-188 (1998).
22. Kennedy, A.R., “The effect of TiH2 heat
treatment on gas relase and foaming in Al-TiH2
preforms”, Scripta Materialia, 47: 763-767
(2002).
23. Mohan, K., Yip, T.H., Sridhar, I., Seow, H. P.,
“Effect of face sheet material on the indentation
response of metallic foams”, J Mater Sci.,
42:3714–3723, (2007).
24. Shaw, M.C., Sata, T.,‘‘The plastic behavior of
cellular materials’’, Int. J. Mech. Sci. 8, 469-
472, (1966).

Thank you for copying data from http://www.arastirmax.com