Statistically Almost A-convergence of Sequences of Sets

Journal Name:

Publication Year:

Abstract (2. Language): 
The concept of Wijsman statistical convergence was defined by Nuray and Rhoades [9]. In this paper we define statistically almost - convergence for sequences for sets in sense of Wijsman and study some properties of this concept.



[1] R C Buck. Generalized asymptotic density. American Journal of Mathematics, 75:335–
346, 1953.
[2] H Fast. Sur la convergence statistique. Colloquium Mathematicum, 2:241–244, 1951.
[3] A R Freedman, J J Sember, and M Rapheal. Some cesaro type summability spaces.
Proceedings of the London Mathematical Society, 37(3):508–520, 1978.
[4] J A Fridy. On statistical convergence. Analysis, 5(4):301–313, 1985.
[5] L Leindler. Über die de la vallèe-pousinsche summierbarkeit allgemeiner orthogonalreihen.
Acta Mathematica Academiae Scientiarum Hungaricae, 16:375–387, 1965.
[6] G G Lorentz. A contribution to the theory of divergent sequences. Acta Mathematica,
80:167–190, 1948.
[7] I J Maddox. A new type of convergence. Mathematical Proceedings of the Cambridge
Philosophical Society, 83(1):61–64, 1978.
[8] M Mursaleen. -statistical convergence. Mathematica Slovaca, 50(1):111–115, 2000.
[9] F Nuray and B E Rhoades. Statistical convergence of sequences of sets. Fasciculi mathe-
matici, 49:87–99, 2012.
[10] I J Schoenberg. The integrability of certain functions and related summability methods.
American Mathematical Monthly, 66:361–375, 1959.
[11] H Steinhaus. Sur la convergence ordinaire et la convergence asymptotique. Colloquium
Mathematicum, 2:73–74, 1951.
[12] T ˘Salát. On statistically convergent sequences of real numbers. Mathematica Slovaca,
30(2):139–150, 1980.
[13] A Zygmund. Trigonometric Series. Cambridge University Press, Cambridge, UK, 1969.

Thank you for copying data from http://www.arastirmax.com