[1] Özel, C., Soykan, O., Zengin, B., 2012. Filler Olarak Mermer Tozu İçeren Beton
Özelliklerinin Bulanık Mantık Kullanılarak Belirlenmesi, e-Journal of New World
Sciences Academy Engineering Sciences, 2A0075, 7, (2), 28-46.
[2] Han, S.H., Kim, J.K., Park, Y.D., 2003. Prediction of compressive strength of fly
ash concrete by new apparent activation energy function, Cem. Concr. Res., 33 (7), 965-
971.
[3] Chen, H.S., Sun, W., Stroeven, P., 2003. Prediction of compressive strength and
optimization of mixture proportioning in ternary cementitious systems, Mater. Struct.,
36 (260), 396-401.
[4] Gupta, R., Kewalramani, M.A., Goel, A., 2006. Prediction of concrete strength using
neural-expert system, J. Mat. Civ. Engrg., 18 (3), 462-466.
[5] Peng, C.H., Yeh, I.C., Lien, L.C., 2009. Modeling strength of high-performance
concrete using genetic operation trees with pruning techniques, Comput. Concr., 6 (3),
203-223.
Cengiz ÖZEL, Alper TOPSAKAL
56
[6] Sobhani, J., Najimi, M., Pourkhorshidi, A.R., Parhizkar, T., 2010. Prediction of the
compressive strength of no-slump concrete: A comparative study of regression, neural
network and ANFIS models, Const. Build. Mat., 24, 709–718.
[7] Ozbay, E., Oztas, A., Baykasoglu, A., 2010. Cost optimization of high strength
concretes by soft computing techniques, Comput. Concr., 7 (3), 221-237.
[8] Bilgehan, M., Turgut, P., 2010. The use of neural networks in concrete compressive
strength estimation, Comput. Concr., 7 (3), 271–283.
[9] Atici, U., 2011. Prediction of the strength of mineral admixture concrete using
multivariable regression analysis and an artificial neural network, Expert Syst. Appl., 38
(8), 9609-9618.
[10] Duan, Z.H., Kou, S.C., Poon, C.S., 2013. Prediction of compressive strength of
recycled aggregate concrete using artificial neural networks, Construction and Building
Materials, 40, 2013, 1200-1206.
[11] Dantas, A.T.A., Leite, M.B., Nagahama, K. J., 2013. Prediction of compressive
strength of concrete containing construction and demolition waste using artificial neural
networks. Construction and Building Materials, 38, 2013, 717-722.
[12] Erdal, H. İ., 2013. Two-level and hybrid ensembles of decision trees for high
performance concrete compressive strength prediction, Engineering Applications of
Artificial Intelligence, 26 (7), 2013, 1689-1697.
[13] Chou, J.S., Pham, A.D., 2013. Enhanced artificial intelligence for ensemble
approach to predicting high performance concrete compressive strength, Construction
and Building Materials, 49, 554-563.
[14] Yuan, Z., Wang, L. N., Ji, X., 2014. Prediction of concrete compressive strength:
Research on hybrid models genetic based algorithms and ANFIS, Advances in
Engineering Software 67, 156–163.
[15] Metwally, A.A.E., 2014. Compressive strength prediction of Portland cement
concrete with age using a new model Housing and Building National Research Center
(HBRC Journal) http://dx.doi.org/10.1016/j.hbrcj.2013.09.005, (In Press).
[16] Özel, C., 2007. Katkılı Betonların Reolojik Özeliklerinin Taze Beton Deney
Yöntemlerine Göre Belirlenmesi, S.D.Ü. Fen Bilimleri Enstitüsü İnşaat Mühendisliği
A.B.D, Isparta.
[17] Yücel, K.T., Özel C, 2012. Modeling of mechanical properties and bond
relationship using data mining process, Advances in Engineering Software 45, 54–60.
Veri Madenciliği Kullanarak Beton Basınç Dayanımının Belirlenmesi
57
[18] Terzi, Ö., Küçüksille, E.U., Keskin, M.E., 2005. Modeling of Daily Pan
Evaporation Using Data Mining. International Symposium on Innovations in Intelligent
Systems and Applications, 182-185, İstanbul.
[19] Uyan, M., Çay, T. 2008. Mekânsal Uygulamalar İçin Veri Madenciliği Yaklaşımı,
2. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, 13-15 Ekim 2008, 531-
538, Kayseri.
[20] Terzi, Ö., Küçüksille, E.U., Ergin, G., İlker, A., 2011. Veri Madenciliği Süreci
Kullanılarak Güneş Işınımı Tahmini. SDU International Technologic Science, 3 (2),
29-37.
[21] Terzi, S., 2006. Modelling the pavement present serviceability index of flexible
highway pavements using data mining. J. Appl. Sci., 6 (1), 193–197.
[22] Zhang, J., Shi, Y., Zhang, P., 2009. Several multi-criteria programming methods
for classification. Comput. Operat. Res., 36, 823–836.
[23] Keskin, M.E, Terzi, Ö., Küçüksille, E.U., 2009. Data mining process for integrated
evaporation model. J. Irrig. Drain. Eng., 135(1), 39–43.
[24] Küçüksille, E.U., Selbas, R., Şencan, A., 2009. Data mining techniques for
thermophysical properties of refrigerants. Energy Convers. Manage, 50, 399–412.
[25] Han, J., Kamber, M., 2006. Data Mining: Concepts and Techniques, Second
Edition, Elsevier, 743 p.
Thank you for copying data from http://www.arastirmax.com