You are here

Kayın, Göknar ve Göknar-Kayın Meşcerelerinde Yaprak Alan İndeksi ile Toprak Özellikleri Arasındaki İlişkiler

Relationships Between Soil Properties and Leaf Area Index in Beech, Fir and Fir-Beech Stands

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Leaf area index (LAI) control many ecophysiological processes such as photosynthesis, interception, evapotranspiration and deposition of atmospheric chemicals. LAI is a particularly important ecosystem characteristic, because it is a direct measure of the photosynthetically-active surface area which converts light energy into plant biomass. It should not be surprising that there is a strong relationship between leaf area index and productivity in many terrestrial ecosystems. In this research, leaf area index of different stands (beech, fir and fir-beech) were investigated using the hemispherical photographs. Some soil properties (e.g. texture, pH, organic C, total N and moisture) were also determined. The mean values for LAI were 3.36, 2.94 and 3.96 m2 m-2 in the beech, fir and fir-beech stands, respectively. Statistical analyses imply that there is a significant difference (p<0.05) among the leaf area indexes of the tree stand types. LAI showed significant correlation with the soil organic C, moisture and pH. Based on our results, changes of stand type are likely to effects on leaf area index and thereby photosynthesis, interception, evaporation and transpiration process under the same ecological conditions.
Abstract (Original Language): 
Yaprak alan indeksi (YAİ), fotosentez, intersepsiyon, evapotranspirasyon ve kirleticilerin depolanması gibi çok farklı süreçleri kontrol etmektedir. YAİ güneş ışınlarını bitkisel biyokütleye çeviren aktif yaprak yüzey alanının doğrudan bir ölçüsüdür. Bu nedenle YAİ önemli bir eko sistem karakteristiğidir ve birçok karasal ekosistemde, verimlilik ile sıkı ilişki içerisindedir. Bu araştırmada, yarıküresel fotoğraflar yardımıyla farklı meşcerelerdeki (kayın, göknar ve göknar-kayın) yaprak alan indeksi değerleri araştırılmıştır. Bunun yanı sıra, incelenen meşcere tiplerine ait bazı toprak özellikleri (tekstür, pH, organik C, toplam N, nem vb.) de belirlenmiştir. Yaprak alan indeksi değerleri; kayında 3.36 m2 m-2, göknarda 2.94 m2 m-2 ve göknar-kayında 3.96 m2 m-2 bulunmuş ve istatistiki olarak anlamlı fark göstermiştir. Korelasyon analizi sonuçlarına göre; YAİ ile organik C, örnek alma anındaki nem ve pH arasında negatif ve anlamlı bir ilişki vardır. Araştırma sonuçları, aynı yetişme ortamı şartlarında, meşcere tipinin yaprak alan indeksi üzerinde etkili olduğunu ve böylece fotosentez, intersepsiyon, evaporasyon ve transpirasyon gibi süreçleri de değiştirdiğini göstermektedir.
47-54

REFERENCES

References: 

Barnes, B.V., D.R. Zak, S.R. Denton
and S.H. Spurr, 1998. Forest Ecology. 4 th ed. John Wiley and Sons, New York, pp 774.
Black, C.A., 1965. Methods of Soil
Analysis: Part I Physical and Mineralogical Properties, Part II Chemical and Microbiological Properties, American Society of Agronomy, Madison Wisconsin USA.
Blake, G.R., 1965. Particle density. In: Klute A (ed), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America, Madison, Wisconsin, USA, 371-373.
Bonan, G.B., 1993. Importance of leaf area index and forest type when estimating photosynthesis in Boreal forest. Remote Sensing of Environment. 43: 303-314.
Bouriaud, O., K. Soudani and N. Breda, 2003. Leaf area index from litter collection: impact of specific leaf area
52
Kayın, Göknar ve Göknar-Kayın Meşcerelerinde Yaprak Alan İndeksi ile Toprak Özellikleri Arasındaki İlişkiler
variability within a beech stand. Canadian Journal Remote Sensing of Environment. 29(3):
371-380.
Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal. 54: 464¬465
Brady, N.C., 1990. The Nature and
Properties of Soils. 10th Ed. New York: Macmillan, 621 pp.
Burton, A. J., K.S. Pregitzer and D.D. Reed, 1991. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient. Forest Science. 37(4): 1011-1059.
Coyne, M.S. and J.A. Thompson, 2006.
Fundamental Soil Science. Delmar Learning, Clifton Park, New York, 403 pp.
Çepel, N., 1985. Toprak Fiziği. İ.Ü Yayın No: 3313, O.F Yayın No. 374, İstanbul,
288 s.
Erinç, S., 1984. Klimatoloji ve Metodları. İÜ Yayın No. 3278, Deniz Bilimleri ve Coğrafya Enstitüsü Yayın No. 2, İstanbul.
Erkovan, H.İ, M.K. Güllap, M. Daşcı and A. Koç,
2009
. Changes in leaf area index, forage quality and above-ground biomass in grazed and ungrazed rangelands of Eastern Anatolia Region. Ankara Üniversitesi, Tarım Bilimleri Dergisi. 15(3): 217-223.
Fassnacht, K.S. and S.T. Gower, 1997.
Interrelationships among the edaphic and stand characteristics, leaf area index, and aboveground net primary production of upland forest ecosystems in North Central Wisconsin.
Canadian Journal of Forest Research. 27:
1058-1067.
Foth, H.D., 1984. Fundamentals of Soil
Science. 7th Ed. John Wiley and Sons, New
York, 420 pp.
Gholz, H. L., 1982. Environmental limits on aboveground net primary production, leaf area and biomass in vegetation zones of the Pacific Northwest. Ecology. 53: 469-481.
Gower, S. T., K.A. Vogt and C.C.
Grier, 1992. Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecology Monograph. 62:
43-65.
Grier, C.C. and S.W. Running, 1977.
Leaf area of mature northwestern coniferous forests: relation to water balance. Ecology. 58:
893-899.
Gülçur, F., 1974. Toprağın Fiziksel ve Kimyasal Analiz Metodları, Kutulmuş Matbaası, İ.Ü. Yayın No. 1970, Orman Fakültesi Yayın No. 201, İstanbul, 225 s.
Hoff, C. and S. Rambal, 2003. An
examination of the interaction between climate, soil and leaf area index in a Quercus ilex ecosystem. Annals of Forest Science. 60:153¬161.
Jose, S. and A.R. Gillespie, 1997. Leaf
area-productivity relationships natural disturbances. Among mixed-species hardwood forest communities of the central hardwood region. Forest Science. 43(1): 56-64.
Kacar, B., 1995. Bitki ve Toprağın Kimyasal Analizleri, III. Toprak Analizleri. Ankara Üniv. Ziraat Fak. Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara, 705 s.
Kantarcı, M.D., 1979. Aladağ
kütlesinin (Bolu) kuzey aklanındaki uludağ göknarı ormanlarında yükselti iklim kuşaklarına göre bazı ölü örtü ve toprak özelliklerinin analitik olarak araştırılması. İ.Ü Yayın No. 2634, Orman Fakültesi Yayın No. 274, İstanbul,
220 s.
Kantarcı, M.D., 2000. Toprak İlmi.
İstanbul Üniversitesi Yayın No. 4261, Orman
Fakültesi Yayın No. 462, İstanbul, 420 s.
Kara, Ö., İ. Bolat, K. Çakıroğlu and M. Öztürk, 2008. Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biology and Fertility of Soils.
45(2): 193-198.
Kozlowski, T.T., P.J. Kramer and S.G.
Pallardy, 1991. The Physiological Ecology of Woody Plants. Academic Press, New York, 657
pp.
Long, J.N. and F.W. Smith, 1990.
Determinant of stemwood production in Pinus contorta var. latifolia forest: the influence of site quality and stands tructure. Journal Applied
Ecology. 27: 847-856.
Müjdeci, M., A. Sarıyev and V. Polat, 2005. Buğdayın (Triticum aestivum L.) gelişme dönemleri ve yaprak alan indeksinin matematiksel modellenmesi. Ankara
Üniversitesi,Tarım Bilimleri Dergisi. 11(3):
278-282.
Nemani, R.R and S.W. Running, 1989.
Testing a theoretical climate-soil-leaf area hydrologic equilibrium oh forest using satellite data and ecosystem simulation. Agricultural and Forest Meteorology. 44: 245-260.
Öztürk, M., 2009. An integrated land use-hydrological model for the Bartin spring watershed. Ph. D. Thesis. Boğaziçi University, Institute of Environmental Sciences, İstanbul,
196p.
53
Ömer Kara, Mahmut Şentürk, İlyas Bolat, Kamil Çakıroğlu
Schleppi, P., M. Conedera, I. Sedivy and A. Thimonier, 2007. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agricultural and Forest
Meteorology. 144: 236-242.
Soudani, K., J. Trautmann and J.M.N. Walter, 2002. Leaf area index and canopy stratification in Scots pine (Pinus sylvestris L.) stands. International Journal of Remote
Sensing. 23: 3605-3618.
Swank, W.T., L.T. Swift and J.E.
Douglass, 1988. Streamflow changes associated with forest cutting, species conversions, and
national disturbances. Forest hydrology and ecology at Coweeta, ed. W.T. Swank and D.A.
Crossley, 297-312.
Tanaka, K. and S. Hashimoto, 2006.
Plant canopy effects on soil thermal and hydrological properties and soil respiration.
Ecological Modelling. 96: 32-34
Vose J.M. and H.L. Allen, 1988. Leaf
area, stemwood growth, and nutrition relationships in loblolly pine. Forest Science.
34: 547-563.
Waring, R.H., 1983. Estimating forest growth and efficiency in relation to canopy leaf area. Advanced Ecology Research. 13: 327-354.

Thank you for copying data from http://www.arastirmax.com