You are here

EJEKTÖR GEOMETRİSİNİN EJEKTÖRLÜ ABSORPSİYONLU SOĞUTMA SİSTEMİ PERFORMANSINA ETKİSİ

THE EFFECT OF EJECTOR GEOMETRY ON PERFORMANCE OF EJECTOR‐ABSORPTION REFRIGERATION SYSTEM

Journal Name:

Publication Year:

Keywords (Original Language):

Author Name
Abstract (2. Language): 
In this study, the effect of ejector geometry on performance of an ejector‐absorption refrigeration system (EARS) operating with the aqua/ammonia was investigated. By using of the ejector, the obtained absorber pressure becomes higher than the evaporator pressure and thus the system works with triple‐pressure‐level. The ejector has four functions: it (i) aided pressure recovery from the evaporator, (ii) upgraded the mixing process and the pre‐absorption by the weak solution of the ammonia coming from the evaporator, (iii) increased absorber temperature and (iv) pre‐absorption in the ejector improves the efficiency of the EARS. Performance improvement by ejector geometry under maximum COP and ECOP conditions is around 2.3% for COP and 4.7% for ECOP. CFD analysis of the geometry of the ejector also functions defined in theory has been found to fulfill visually.
Abstract (Original Language): 
Bu çalışmada, amonyak/sui le çalışan ejektörlü absorpsiyonlu soğutma sisteminde ejector geometrisinin system performansı üzerine tkileri araştırılmıştır. Ejektör kullanılmasıyla, elde edilen absorber basıncı eveparotor basıncından daha yüksek olur ve böylece system üçlü basınçla çalışır. Ejektörün dört fonksiyonu vardır: (I) eveparotördeki basıncın iyileştirilmesine yardım eder, (ii) eveparotörden gelen amonyakça zayıf eriyiğin ön absorplanmasını sağlar ve karışım işlemini iyileştirir, (iii) absorber sıcaklığını artırır, (iv) ejektördeki ön absorplama sistemin verimini iyileştirir. Maksimum COP ve ECOP değerlerinde ejector COP değerini %2.3, ECOP değerinde de %4.7 iyileşme sağlamıştır. Ayrıca CFD analizi ile ejector geometrisinin teorik olarak tanımlanan fonksiyonlarını görsel olarak yerine getirdiği tespit edilmiştir.
119
142

REFERENCES

References: 

1. Abrahamsson, K., Gidner, A., Jernqvist, A., Design and experimental performance
evaluating of an ARS with self circulation, Heat Recovery Systems& CHP, vol. 15, no. 2,
pp. 257‐272, 1995.
2. Davidson, W., F., Erickson, D., C., 500oF Absorption heat pump under develeopment,
Proceeding, 8th Annual Industrial Energy Technology Conference, Houston, Texas,
USA, pp. 350‐358, 1986.
3. George, J., Murthy, S., Experiments on a vapor ARS, Inernational Journal of
Refrigeration, vol. 16, no. 2, pp. 107‐119, 1993.
4. Herold, K., E., Radermacher, R., Development of an absorption heat pump water
using an aqueous ternary hydroxide working fluid, Inernational Journal of
Refrigeration, vol. 14, no. 3, pp. 156‐167, 1991.
5. Zhuo, C., Z., Machielsen, C., H., Thermodynamic assessment of an ARS with TFE/Pyr as
the working pair, Inernational Journal of Refrigeration, vol. 14, no. 3, pp. 265‐272,
1993.
6. Jelinek, M., Levy, A., Borde, I., Performance of a triple‐pressure‐level absorption cycle
with R125‐N,N‐dimethylethylurea, Applied Energy, 71, 171‐189, 2002.
7. Sun, Da‐Wen, Variable geometry ejectors and their applications in ejector
refrigeration systems, Energy, 21,10, 919‐929, 1996.
8. Jiang, L., Gu, Z., Feng, X., Li, Y., Thermo‐economical analysis between new absorptionejector
hybrid refrigeration system and small double‐effect absorption system,
Applied Thermal Engineering, 22,1027‐1036, 2002.
9. Huang, B.J., Petrenko, V.A., Samafatov, I. Y., Shchetinina, N.A., Collector selection for
solar ejector cooling system, Solar Energy, 71, 4, 269‐274, 2001.
10. Sun, Da‐Wen, Eames, I. W., Aphornratana, S., Evaluation of a novel combined ejector
absorption refrigeration cycle‐I: computer simulation, International Journal of
Refrigeration, 19,3, 172‐180, 1996.
11. Shi, L., Yin, J, Wang, X., Zhu, M., “Study a new ejection‐absorption heat transformer”,
Applied Energy, Vol. 68, pp. 161‐171, 2001.
M. T. Çakır 1/1 (2015) 119‐142 141
Gazi Mühendislik Bilimleri Dergisi
12. Levy A., Jelinek, M, Borde, I., Study of design parameters of a jet ejector for
absorption systems, Applied Energy, vol. 72, pp. 467‐478, 2002.
13. Levy A., Jelinek, M, Borde, I., Numerical study on the design parameters of a jet
ejector for absorption systems, The 20th International Congress of Refrigeration
Sydney, Australia, vol, III, (paper 018), 1999.
14. Sozen, A., Yucesu, S., Performance Improvement of Absorption Heat Transformer,
Renewable Energy, 32/2 :267‐284, 2007.
15. Bourseau, P., Bugarel, R., Refrigeration par cycle a absorption‐diffusion: comparaison
des performances des systemes NH3‐H2O et NH3‐NaSCN, International Journal of
Refrigeration, 9, July, 206‐214, 1986.
16. Ziegler, B., Trepp, Ch., Equation of state for ammonia‐water mixtures, International
Journal of Refrigeration, 7, 2, 101‐106, 1984.
17. Alvares, S. G., Trepp, Ch., Simulation of a solar driven aqua‐ammonia absorption
refrigeration system, Part 1: mathematical description and system optimization,
International Journal of Refrigeration, 10, 40‐48, 1987.
18. Shulz, S.C.G, Equation of state for ammonia‐water mixtures, International Journal of
Refrigeration, 7, 2, 40‐48, 1984.

Thank you for copying data from http://www.arastirmax.com