You are here

Sevofluran Anestezis i Uygulanmış Rat Kalb Dokularında Oksidan ve Antioksidan Sistem Üzerine Epigallocatechin 3-Gallate'ın Etkileri

Effects of Epigallocatechin 3- Gallate in Rat Cardiac Tissue on Oxidant and Antioxidant System Exposed to Sevoflurane Anesthesia

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Objectives: To investigate the possible effects of sevoflurane anesthesia and epigallocatechin 3- gallate (EGCg) on cardiac tissue by evaluating the oxidant and antioxidant status in rats. Materials and Methods: Tree groups of animals were studied. Sevoflurane 3% (v/v) in air/O2 were administered to animals in group 1 (n = 6) and sevoflurane plus EGCg was administered in group 2 (n = 6). Six animals were allocated to control group (group 3). Malondialdehyde (MDA), nitric oxide (NOx), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) in cardiac tissue were studied. Results: In group I, MDA, SOD and GSH-Px levels were significantly increased (p<0.05, p<0.0001, p<0.001, respectively) while non-significant changes occurred in CAT and NOx activities. Supplementation of EGCg (group 2) decreased the MDA, SOD and GSH-Px activities whereas, the NOx activities increase with EGCg supplementation. Conclusion: The amount of lipid peroxidation and antioxidant enzyme levels were more increased in following sevoflurane administration. The administration of intravenous EGCg significantly protected cardiac tissue. ©2007, Firat University, Medical Faculty
Abstract (Original Language): 
Amaç: Oksidan ve antioksidan durumun değerlendirilmesi ile kardiak doku üzerine sevofluran anestezisi ve epigallocatechin 3- gallate (EGCg)'nin muhtemel etkilerini araştırmayı amaçladık. Gereç ve Yöntem: Ratlar 3 gruba ayrılarak çalışıldı. Grup 1'e (n:6) sevofluran, %3 (v/v) hava/O2 karışımı ile uygulandı. Ve grup 2'e (n:6) sevofluran + EGCg uygulandı. Kontrol grubu için ise yine 6 tane rat seçildi. Malondialdehid (MDA), nitrik oksit (NOx), süperoksit dismutaz (SOD), glutatyon peroksidaz (GSH-Px) and katalaz (CAT) kardiak dokuda çalışıldı. Bulgular: Grup 1'de CAT ve NO düzeyleri değişmezken, MDA, SOD ve GSH-PX düzeyleri yükselmiş olarak bulundu. EGCg'nin eklenmesi MDA, SOD ve GSH-Px aktivitelerini düşürüken, NOx düzeyleri artmış olarak bulundu. Sonuç: Lipid peroksidasyonu ve antioksidan enzim düzeyleri sevofluran uygulamasını takiben fazla miktarda artmıştır. Ancak, iv EGCg uygulaması kardiak dokuyu önemli şekilde korumaktadır. ©2007, Fırat Üniversitesi, Tıp Fakültesi



1. Burrows, D.L., Nicolaides, A., Stephens, G.C., Ferslew, K.E., The distribution of sevoflurane in a sevoflurane induced death. J Foren Sci. 2004; 49: 1-4.2. Yoshida K, Okabe E. Selective impairment of endothelium-dependent relaxation by sevoflurane. Anesthesiology 1992; 76:
440-4473. Maria MA, Luis MA, Antonio LF, et al. Sevoflurane reduces endothelium-dependent vasorelaxation: role of superocide anion
and endothelin. Can J Anaesth 2002; 49: 471-476.
e Ruijter W, Musters RJ, Boer C, Stienen GJ, Simonides WS, de Lange JJ. The cardioprotective effect of sevoflurane depends on protein kinase C activation, opening of mitochondrial K(+)(ATP) channels, and the production of reactive oxygen species. Anesth Analg 2003; 97: 1370-1376.
5. Bouwman RA, Musters R.J, van Beek-Harmsen BJ, de Lange JJ, Boer C. Reactive oxygen species precede protein kinase C-delta activation independent of adenosine triphosphate-sensitive mitochondrial channel opening in sevoflurane-induced cardioprotection. Anesthesiology 2004; 100: 506-514.
6. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, third ed.. Oxford Science Publications. 1999
7. Sen, C.K., Packer, L. Antioxidant and redox regulation of gene transcription. FASEB J 1996;10: 709-720.
8. Kroemer G, Pett P, Zamzami N, Vayssiere JL, Mignotte B. The biochemistry of programmed cell death.FASEB J 1995; 9:1277¬1287.
9. Abuja PM, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin
Chim Acta 2001; 306: 1 -17
10. Marnett, L. Oxyradicals and DNA damage. Carcinogenesis 2000 ;
21 : 361-370.
11. Shigenaga, M.K., Hagen, T.M., Ames, B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 1994; 91: 10771-10778.
12. Bland JS. Oxidants and antioxidants in clinical medicine: past, present and future potential. J Nutr Environ Med 1995; 5: 255¬280.
13. McKay DL, Blumberg JB. The role of tea in human health: an update. Journal of the American College of Nutrition 2002: 21;
14. Hiraw R, Sasamoto W, Matsu moto A, Itakura H, Igarashi O, Kondo K.. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. Journal of Nutritional Science
and Vitaminology (Tokyo) 2001; 47: 357-362.
15. Kanae M, Toby GR. Reduction of spontaneous mutagenesis in mismatch repair-deficient and proficient cells by dietary antioxidants. Mutation Research 2001; 1: 480- 481.
16. Steven IW, Hasan M. Gene expression profile in human prostate LNCaP cancer cells by (-) epigallocatechin-3-gallate. Cancer
Letters 2002; 182: 43-51.
17. Young DJ, Lee ME. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG),a major component of green tea. International Journal of Experimental Pathology 2001; 82 : 309-316 .
18. Guo Q, Zhao B, Li M, Shen S, Xin W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1996; 1304: 210 -222.
19. Lee SR, Im KJ, Suh SI, Jung JG. Protective effect of green tea polyphenol (-)-epigallocatechin gallate and other antioxidants on lipid peroxidation in the gerbil brain homogenates. Phytother Res
2003; 17: 206- 209.
e Kaman
20. Matsuo N, Yamada K, Shoji K, Mori M, Sugano M. Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship.
Allergy 1997; 52: 58 - 64.
21. Lowry O, Rosenbraugh N, Farr L,Randall R. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951; 182,
22. Cortas NK, Wakid NW. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin
Chem 1990; 36: 1440-1143.
23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Analytical Biochemistry.
1979; 95: 351-358.
24. Durak I, Yurtarslani Z, Canbolat O, Akyol O. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim
Acta; 1993; 214: 103-104.
25. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase. J Lab & Clin Med 1967; 70: 158-169.
26. Aebi H. Catalase In: Bergmeyer U, ed. Methods of enzymatic analysis. New York and London: Academic Press; 1974; 673¬677.
27. McCord JM. The evolution of free radicals and oxidative stress.
Am J Med 2000; 108: 652-659.
28. Hong J, Lu H, Meng X, Ryu JH, Hara Y, Yang CS. Cancer Res 2002; 62: 7241-7246.
29. Shen JZ, Zheng XF, Wei EQ, Kwan CY. Clin. Exp. Pharmacol. Physiol. 2003; 30: 88-95.
30. Lorenz M, Wessler S, Follmann E, Michaelis W, Dusterhoft T, Baumann G, Stangl K, Stangl V. constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J Biol Chem 2004 13;
31. Kevin LG, Novalija E, Riess ML, Camara AKS, Rhodes SS, Stowe DF. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in
isolated hearts. Anesth Analg 2003; 96: 949-955.
32. Novalija E, Fujita S, Kampine JP, Stowe DF. Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts. Anesthesiology 1999; 91: 701¬712.
33. Novalija E, Kevin LG, Eells J, Henry M, Stowe DF. Anesthetic
preconditioning improves adenosine triphosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechanism. Anesthesiology 2003; 98: 1155-1163.
34. Yoshida K and Okabe E. Selective impairment of endothelium-dependent relaxation by sevoflurane: oxygen free radicals participation. Anesthesiology 1992; 76: 440-447.

Thank you for copying data from