You are here

Destek Vektör Makineleriyle Sınıflandırma Problemlerinin Çözümü için Çekirdek Fonksiyonu Seçimi

Kernel Function Selection for the Solution of Classification Problems via Support Vector Machines

Journal Name:

Publication Year:

Abstract (2. Language): 
One of the most important machine learning algorithms developed for to accomplish classification task of data mining is Support Vector Machines. In the literature, Support Vector Machines has been shown to outperform many other techniques. Kernel function selection and parameter optimization play important role in implementation of Support Vector Machines. In this study, Kernel function selection process was ground on the randomized block experimental design. Univariate ANOVA was utilized for kernel function selection. As a result, the research proved that radial based Kernel function was the most successful Kernel function was proved.
Abstract (Original Language): 
Veri madenciliğinin görevlerinden biri olan sınıflandırma probleminin çözümü için geliştirilmiş önemli makine öğrenimi algoritmalarından biri Destek Vektör Makineleri’dir. Literatürde Destek Vektör Makineleri’nin diğer birçok tekniğe göre daha başarılı sonuçlar verdiği kanıtlanmıştır. Destek Vektör Makineleri’nin uygulanması sürecinde çekirdek fonksiyonu seçimi ve parametre optimizasyonu önemli rol oynamaktadır. Bu çalışmada, çekirdek fonksiyonu seçim süreci rassal blok deney tasarımı temeline oturtulmuştur. Çekirdek fonksiyonun seçiminde tek değişkenli varyans analizinden (Univariate ANOVA) yararlanılmıştır. Sonuç olarak en başarılı performansa sahip çekirdek fonksiyonunun radyal tabanlı fonksiyon olduğu kanıtlanmıştır.
175
198

REFERENCES

References: 

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition,
data mining and knowledge discovery. Kluwer Academic Publishers, 2 (2),
121-167.
Busuttil, S. (2003). Support vector machines. In Proceedings of the Computer Science
Annual Research Workshop, Villa Bighi, Kalkara, University of Malta.
Conagin, A., Barbin, D., Demétrio, C.G.B. (2008). Modifications for the Tukey test
procedure and evaluation of the power and efficiency of multiple comparison
procedures. Scientia Agricola, 65, 428-432.
Cortes, C., Vapnik, V. (1995). Support vector networks, Machine Learning, 20,1-25.
Çakar, Ö. (2007). Fonksiyonel analize giriş I. A.Ü. Fen Fakültesi Döner Sermaye
İşletmesi Yayınları, no:13, (Erwin KREYSZİG’den Uyarlama).
Demirci, D. A. (2007). Destek vektör makineleri ile karakter tanıma, Yıldız Teknik
Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
Fernandez, G.C.J. (1992). Residual analysis and data transformations: Important
tools in statistical analysis. HortScience, 27, 297–300.
Fletcher, T. (2009). Support vector machines explained.
www.cs.ucl.ac.uk/sta_/T.Fletcher/
Gunn, S. R. (1998). Support vector machines for classification and regression.
Technical Report, Faculty of Engineering, Science and Mathematics, School of
Electronics and Computer Science.
http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf
Huang, C. L. and Wang, C. J. (2006). A GA-based feature selection and parameter
optimization for support vector machines. Expert Systems with Applications,
31:231-240.
Katagiri, S. and Abe, S. (2006). Incremental training of support vector machines
using hyperspheres. Pattern Recognition Letters, 27 (13), 1495-1507
Li, S., Li, H., Li, M., Shyr, Y., Xie, L. and Li, Y. (2009). Improved prediction of lysine
acetylation by support vector machines. Protein and peptide letters, 16, 977-983.
Nitze, I., Schulthess, U. And Asche, H. (2012). Comparison of machine learning
algorithms random forest, artficial neural network and support vector machine to
maximum likelihood for supervised crop type classification. Proceedings of the 4th
GEOBIA, Janeiro - Brazil., 35-40.
ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ İİBF DERGİSİ
198
Osowski, S., Siwekand, K., and Markiewicz, T. (2004). MLP and SVM Networks – a
Comparative Study. Proceedings of the 6th Nordic Signal Processing Symposium –
NORSIG.
Schölkopf, B., and Smola A.J. (2002). Learning with Kernels. MIT Press,626 s.
Soman, K.P., Loganathan, R. and Ajay, V. (2011). Machine learning with SVM and
other kernel methods. PHI Learning Pvt. Ltd., 486 s.
Suykens, J. A. K. (2002). Least squares support vector machines. River Edge, NJ :
World Scientific, xiv, 294 s.
UCI Repository of Machine Learning Databases, Department of Information and
Computer Science, University of California, Irvine, CA.

Thank you for copying data from http://www.arastirmax.com