You are here

Yapı elemanlarında kullanılan atık lastiklerin ısıl performansının incelenmesi

Investigation of the thermal performance of waste rubber as a building element

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
A great majority of matters, which are considered as wastes in the world, consist of recyclable materials. Waste, which is whether industrial or not, is seen as the biggest problem for both Turkey and World in the future in terms of the way to eliminate or to get rid of. One of the most logical solutions of this problem is to recycle of disposal and waste materials. The use of industrial waste rubbers to improve properties of concrete is quite common way. In this context, experimental investigations are performed to obtain new concrete types with relatively high strength, low density and good thermal and acoustic properties for energy efficient buildings. For this purpose, six sets and different types of concrete samples were prepared with a constant watercement ratio, and normal aggregates replaced by Waste rubber concrete aggregates at different volume fractions such as 10%, 20%, 30%, 40%, 50% and 60% of the total aggregate volume. Aggregate grading is made by sieve analysis method. As a result of the sieve analysis, the amount of aggregate remaining on each sieve is weighed, and the amount of aggregate remaining on each sieve is calculated as a percentage (%), by comparing the total weight of the sampled weights. In order to improve the physical and chemical properties of concrete and to increase the durability of construction elements, cement and silica fume are used in concrete production. Super plasticizers and air entraining additives are used in the production of concrete with waste rubber. At the same time, a high proportion of water-reducing/new-generation super plasticizing concrete admixture material has been used in order to provide processability and at the same time to prevent decomposition. Mechanical tests were all conducted and the hot disk method was used to establish thermal property values of concrete samples. As the aggregate ratio increases, the heat insulation property increases at high rates. It was determined that the thermal conductivity of the produced samples decreased by 73.5% for 60 % waste rubber replacement. The maximum and minimum density values were found to be in the range of 2434,30 - 1658,99 kg/m3, respectively. The result reveals that a low weight waste is required to produce rubber-reinforced concrete. Experimental studies on compressive strengths showed that 95% reduction in compressive strength of the specimen was found as a result of calculations made on specimens produced with normal concrete at 60% waste rubber. Such reductions in the bulk densities can have significant advantages from the point of earthquake resistance; thus, the strong vibrations during the earthquake can be absorbed by using these structures. It is seen that the ultrasonic pulse velocity of the normal concrete is 4,673 km / s while that the ultrasonic pulse velocity of the specimens produced with 60% waste rubber is 1,626 km / s. Hence, sound insulation was improved by 65.2%. As a result, the usage of waste rubber aggregate in concrete is very effective on the mechanical and thermal properties for lightweight concretes and.in this study, the relations between the mechanical and thermal properties were determined. The main focus of this paper was to investigate the utilization of waste materials in industrial production. Consequently, the reuse of wastes provides reduction of the environmental threats caused by waste tires, introduction of an alternative source to aggregates in concrete and also contributing to lower insulation cost.
Abstract (Original Language): 
Dünya üzerinde atık olarak değerlendirilen maddelerin büyük bir kısmı geri dönüştürülebilir malzemelerden oluşmaktadır. Atık ya da atıl malzemelerin depolanması ya da uzaklaştırılması Türkiye ve Dünyada geleceğin en büyük problemlerinden biri olarak görülmektedir. Bu problemin en mantıksal çözümlerinden biri atık ya da atıl malzemelerin yeniden kullanılabilirliğinin sağlanabilmesidir. Bir endüstriyel atık olan lastiklerin, beton özeliklerini geliştirmek amacıyla betonun içine katılması oldukça yaygın olarak kullanılmaktadır. Bu doğrultuda, bu çalışmada, enerji verimli binalar için nispeten yüksek mukavemet, düşük yoğunluklu, yüksek ısı ve ses yalıtımı olan yeni beton tipleri elde etmek için deneysel bir çalışma gerçekleştirilmiştir. Bu amaçla, sabit su-çimento oranında, normal agrega yerine hacimce %10, %20, %30, %40, %50 ve %60 oranlarında atık lastik agregası kullanılarak çeşitli beton numuneleri hazırlanmıştır. Deneysel çalışmalarda birim ağırlıkları değişen toplam 6 seri beton üretilmiştir. Üretilen tüm numunelerin mekanik testleri yapılmış ve ısıl özellikleri sıcak disk yöntemi ile ASTM ve EN standartlarına uygun olarak belirlenmiştir. Deneysel çalışmaların sonuçlarına göre kullanılan agreganın elde edilen betonun mukavemetini ve yoğunluğunu düşürdüğü, buna karşı ısı ve ses yalıtım özelliğini yüksek oranda arttırdığı görülmüştür. Bu çalışmada dünyada ve ülkemizdeki endüstriyel atık ürünlerinin mühendislik çalışmalarındaki sonuçları derlenerek yorumlanmıştır.
621
630

REFERENCES

References: 

Aiello M. A., Leuzzi F., (2010). Waste tyre
rubberized concrete: Properties at fresh and
hardened state, Waste Management30, 1696–
1704.
Al-Jabri K.S., Hago A.W., Al-Nuaimi A.S., Al-
Saidy A.H., (2005). Concrete blocks for
thermal insulation in hot climate. Cement and
Concrete Research.35, 1472–1479.
Amari T., Nicolas J. T., and Iddo K. W.,
(1999).Resource Recovery From Rubber Tires,
Resources Policy, 25:179-188,
Atahan A. O., Sevim U. K., (2008). Testing and
Comparison of Concrete Barriers Containing
Shredded Waste Tire Chips, Materials
Letters,62, 3754–757.
BenazzoukA., Douzane O., Langlet T., Mezreb K.,
Roucoult J.M., Queneudec M., (2007).Physico-
Mechanical Properties and Water Absorption of
Cement Composite Containing Shredded Rubber
Wastes, Cement & Concrete Composites, 29,
732–740.
Doğan Ö., (2005 ). Lastik Agregalı Betonların
Özelliklerinin Deneysel Olarak İncelenmesi,
YüksekLisansTezi, GaziÜniversitesi Fen
Bilimleri Enstitüsü,.
Eminoğlu M., (2006). Atık Taşıt Lastiklerin Beton
İçerisinde Kullanımı ve Betonun
Karakteristiklerine etkisi Fıratüniversitesi, Fen
Bilimleri Enstitüsü, Yüksek Lisans Tezi, Elazığ.
Emiroğlu M., Yıldız S., (2010). Atık lastiklerin
inşaat sektöründe kullanılması, Uluslararası
Sürdürülebilir Yapılar Sempozyumu (ISBS),
Ankara, Türkiye, 837-839.
629
Yapı elemanlarında kullanılan atık lastiklerin ısıl performansının incelenmesi
EuroLightCon., (2000). Proposal for a
recommendation on design rules for high
strength LWAC, economic design and
construction with lightweight aggregate
concrete. Document no. BE96-3942/R39.
Freudenthal, A.M., (1950). The Inelastic Behavior of
Engineering Materials and Structures, Wiley,
New York.
Ganjian E., Khorami M., Maghsoudi A. A., (2009).
Scrap-Tyre-Rubber Replacement for Aggregate
and Filler in Concrete, Construction and
Building Materials, 23, 1828–1836.
Hirch, J.T., (1962). Modulus of Elasticity of
Concrete Affacted by Elastic Moduli of Cement
Paste Matrix and Aggregate, Proceedings, ACI.
Kocataşkın F.,(1985). Beton Özelliklerinin
Kompozit Malzeme Kuralları ile İncelenmesi,
İstanbul Teknik Üniversitesi İnşaat Fakültesi,
Yapı Malzemesi Seminerleri, İstanbul.
Neville A. M., (2006). Proporties of concrete,
Pearson Education limited, England.
Newman, J. andChoo, B. S.,(2003). Advanced
Concrete Technology Constituent Materials,
Elsevier Butte worth Heinemann, Oxford,
England.
Sadioğlu O.,(2006). Lastik Agregalı Betonları
ÜçFazlı Kompozit Malzeme Olarak
İncelenmesi, Yüksek Lisans Tezi, Eskişehir
Osmangazi Üniversitesi Fen Bilimleri Enstitüsü,
Eskişehir.
Sukontasukkul, P., Chaikaew, C., (2006). Properties
of Concrete Pedestrian Block Mixed with
Crumb Rubber, Construction and Building
Materials, 20, 7, 450–457.
Topçu İ. B., Avcular N., (1997a). Analysis of
Rubberized Concrete as a Composite Material,
Cement and Concrete Research, 27, 1135–1139.
Topçu İ.B., Avcular N., (1997b).Collision Behaviors
of Rubberized Concretes, Cement and Concrete
Research, 27, 1893–1898,
Topçu İ.B., Özçelikörs Y., (1991).AtıkLastikliBeton,
Isparta Mühendislik Fakültesi 7.Mühendislik
Haftası - Isparta
Topçu İ.B., (1995). The Properties of Rubberized
Concretes, Cement and Concrete Research,
25,304-310.

Thank you for copying data from http://www.arastirmax.com