Buradasınız

ERZURUM İÇİN KISA SÜRELİ YAĞIŞ ŞİDDETİ DENKLEMLERİNİN MODELLENMESİ

MODELLING OF SHORT DURATION RAINFALL (SDR) INTENSITY EQUATIONS FOR ERZURUM

Journal Name:

Publication Year:

Abstract (2. Language): 
The scope of this study is to develop a rainfall intensity-duration-frequency (IDF) equation for some return periods at Erzurum rainfall station. The maximum annual rainfall values for 5, 10, 15, 30 and 60 minutes are statistically analyzed for the period 1956 - 2004 by using some statistical distributions such as the Generalized Extreme Values (GEV), Gumbel, Normal, Two-parameter Lognormal, Three-parameter Lognormal, Gamma, Pearson type III and Log-Pearson type III distributions. %2 goodness-of-fit test was used to choose the best statistical distribution among all distributions. IDF equation constants and coefficients of correlation (R) for each emprical functions are calculated using nonlinear estimation method for each return periods (T = 2, 5, 10, 25, 50, 75 and 100 years). The most suitable IDF equation is observed that imax (t) = A/ (t + C )B, except for T=100 years, because of the highest coefficients of correlation.
Abstract (Original Language): 
Bu çalışmanın amacı, Erzurum yağış istasyonunda bazı dönüş periyodları için bir yağış şiddeti-süre-tekerrür (IDF) denklemi geliştirmektir. 5, 10, 15, 30 ve 60 dakikalar için maksimum yıllık yağış değerleri Genelleştirilmiş Ekstrem Değerler (GEV), Gumbel, Normal, iki parametreli Lognormal, üç parametreli Lognormal, Gamma, Pearson tip III ve Log-Pearson tip III dağılımları gibi bazı istatistiksel dağılımlar kullanılarak 1956-2004 aralığı için istatistiksel olarak analiz edildi. Bütün dağılımlar arasından en iyi istatistiksel dağılımı seçmek için %2 uyum testi kullanıldı. Her amprik fonksiyon için IDF denklem sabitleri ve korelasyon katsayıları (R) bütün dönüş periyodları için (T = 2, 5, 10, 25, 50, 75 ve 100 yıl) lineer olmayan tahmin metodu kullanılarak hesaplandı. En yüksek korelasyon katsayısından dolayı, T = 100 yıl hariç, en uygun IDF denkleminin imax (t) = A / (t + C )B olduğu gözlendi.
75
80

REFERENCES

References: 

Aron, G. and Wall, D.J., White, E.L., and Dunn, C.N.
1987. Regional Rainfall Intensity-Duration-Frequency Curves For Pennsylvania, Water Resour, Bull, 23 (3), pp. 479-485.
Bell, F. C. 1969. Generalized Rainfall-Duration-Frequency Relationships. J. Hydraul. Div., A.S.C.E., 95(hyl), pp. 311- 327.
Bernard, M.M. 1932. Formulas For Rainfall Intensities Of Long Durations, Trans. AXE, 96, pp.
592-624.
Burlando, P. and Rosso, R. 1996. Scaling And Multiscaling Models Of Depth-Duration-Frequency Curves For Storm Precipitation, J Hydrol., 187(1-2), pp. 45-64.
Chen, C.I. 1983. Rainfall Intensity-Duration-
Frequency Formulas, J. Hydraul. Eng., 109 (12), pp.
1603-1621.
Chow, V.T. 1954. The Log-Probability Law And Its
Engineering Applications, Proceedings Of The ASCE,
80 ( 5 ), pp. 1 - 25.
Chow, V.T. 1964. Handbook Of Applied Hydrology.
McGraw- Hill, New York.
Ferro, V., and Froehlich, D. C. 1997. Intermediate-Duration-Rainfall Equations, Journal of Hydraulic Engineering, 123 ( 6 ), pp. 586 - 588.
Froehlich, D.C. 1995. Short-Duration-Rainfall Intensity Equations For Drainage Design, J. Irrigation and Drainage Engineering, 121 ( 4 ), pp. 310 -311.
Garcia-Bartual, R., and Schneider, M. 2001. Estimating Maximum Expected Short-Duration Rainfall Intensities From Extreme Convective Storms,
Phys. Chem. Earth ( B ), 26 ( 9 ), pp. 675 - 681.
Gumbel, E.J. 1958. Statistics Of Extremes, Columbia University Press, New York, NY.
Hanson, C.L. 1995. Short-Duration-Rainfall Intensity Equations For Drainage Design, J. Irrigation and Drainage Engineering, 121 ( 2 ), pp. 219 -221.
Hazen, A. 1914. Storage To Be Provided In Impounding Reservoirs For Municipal Water Supply, Trans. ASCE, 77, 1308, ASCE, New York, NY.
Jenkinson, A. F. 1969. Estimation Of Maximum Floods , World Meteorological Organisation,
Technical Note, No. 98, Chapter 5, pp. 183-257, General Extreme Value Distribution.
Keers, J.F. and Wescott, P. 1977. A computer-based model for design rainfall in the United Kingdom.
Meteorological Office Scientific Paper No. 36, London.
Keifer, C.J. and Chu, H.H. 1957. Synthetic Storm Pattern For Drainage Design, J. Hyd Div., ASCE, 83
(HY4), pp. l-25.
Kite, G.W. 1977. Frequency And Risk Analysis In Hydrology, Water Res. Publications, Fort Collins,
CO.
Koutsoyiannis, D., Kozonis, D. and Manetas, A. 1998. A Mathematical Framework For Studying Rainfall Intensity-Duration-Frequency Relationships, JHydrol. (206), pp. 118- 135.
Pearson, K. 1930. Tables of Statisticians And Biometricians, Part I, The Biometric Laboratory, University College, London; printed by Cambridge University Press, London, 3rd ed.
Şenocak, S.
2004
. The Analysis Of Rainfall Intensity - Duration - Frequency (IDF) Relationships in Turkey, M.Sc Thesis, Department of Civil Engineering, Ataturk University, Erzurum, Turkey.
Sherman, C. W. 1932. Frequency And Intensity Of Excessive Rainfalls At Boston-Massachusetts, Transactions, ASCE, Vol. 95, pp. 95 l- 960.
Walpole, R.E., and Myers, R.H. 1978. Probability And Statistics For Engineers And Scientists, Macmillan Publishing Co, New York, NY.
Weibull, W. 1939a. A Statistical Theory Of The Strength Of Materials, Ing. Vetenskaps Akad. Handl. (Stockholm), vol. 151, p. 15.
Weibull, W. 1939b The Phenomenon or Rupture in Solids, Ing. Vetenskaps Akad. Handl. (Stockholm), Vol. 153, p. 17.
Yarnell, D.L. 1935. Rainfall Intensity-hequency Data. U.S. Department of Agriculture, Misc. Publ. No. 204, Washington, D.C.
Yevjevich, V. 1972. Probability and Statistics in Hydrology, Water Resources Publications, Fort Collins, CO.

Thank you for copying data from http://www.arastirmax.com