Buradasınız

BATARYA KAPASİTE KESTİRİMİ

BATTERY CAPACITY ESTIMATION

Journal Name:

Publication Year:

Abstract (2. Language): 
In this work, a battery capacity estimation method with radial basis functions is proposed for rechargeable batteries. A generic electrical circuit model is used as a battery model. Battery model parameters are estimated with a Kalman filter based algorithm. Battery capacity values estimated with radial basis functions are compared with the measured values. Results show that the proposed method can be used to estimate the battery capacity.
Abstract (Original Language): 
Bu çalışmada, yeniden doldurulabilir bataryalar için batarya kapasitesinin radyal tabanlı fonksiyonlarla kestirimine yönelik bir yöntem önerilmektedir. Batarya modeli olarak genel bir elektriksel devre modeli kullanılmaktadır. Batarya model parametrelerinin kestirimi, Kalman filtre tabanlı bir algoritma kullanılarak yapılmaktadır. Kestirilen model parametrelerine, radyal tabanlı fonksiyonlar uygulanarak elde edilen batarya kapasite kestirim sonuçları, deneysel olarak ölçülen batarya kapasite değerleri ile karşılaştırılmaktadır. Elde edilen sonuçlar, önerilen yöntemin batarya kapasite kestiriminde kullanılabilir olduğunu göstermektedir.
185
191

REFERENCES

References: 

1. Rao, R., Vrudhula, S. ve Rakhmatov, D.N., “Battery modeling for energy-aware system design”, IEEE Computer, Cilt 36, No 12, 77-87, 2003.
Batarya Kapasite Kestirimi C. Barlak ve Y. Özkazanç
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 26, No 1, 2011 191
2. Santhanagopalan, S. ve White, R.E., “Online estimation of the state of charge of a lithium ion cell”, J. Power Sources, Cilt 161, 1346-1355, 2006.
3. Pang, S., Farrell, J., Du, J. ve Barth, M., “Battery state-of-charge estimation”, Proc. Amer. Control Conf., Cilt 2, 1644-1649, Jun. 2001.
4. Salameh, Z.M., Casacca, M.A. ve Lynch, W.A., “A mathematical model for lead-acid batteries”, IEEE Trans. Energy Conversion, Cilt 7, 93-96, Mar. 1992.
5. Chiasson, J. ve Vairamohan, B., “Estimating the state of charge of a battery”, IEEE Trans. Control Systems Technology, Cilt 13, No 3, 465-470, May. 2005.
6. Barsali, S. ve Ceraolo, M., “Dynamical models of lead-acid batteries: implementation issues”, IEEE transactions on Energy Conversion, Cilt 17, No 1, 16-23, March 2002.
7. Chen, M. ve Rinc´on-Mora, G.A., “Accurate electrical battery model capable of predicting runtime and I–V performance”, IEEE Trans. Energy Conversion, Cilt 21, No 2, 504-511, June 2006.
8. Bhangu, B.S., Bently, P., Stone, D.A. ve Bingham, C.M., “Nonlinear observers for predicting SoC and SoH of lead-acid batteries for hev’s”, IEEE Trans Vehicular Technol., Cilt 54, No 3, 783-794, May 2005.
9. Plett, G., “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification”, J. Power Sources, Cilt 134, 262-276, 2004.
10.Huet, F., “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, J. Power Sources, Cilt 70, 59-69,1998.
11. Barlak, C. ve Özkazanç, Y., “Batarya yük durumunun Kalman filtre ile kestirimi”, TOK2008, İstanbul, 742-747, 13-15 Kasım 2008.
12. Barlak, C., Batarya Model Parametrelerinin, Doluluk Durumunun, Sağlık Durumunun Kestirimi ve Ni-Mh Bataryalara Uygulanması, Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, 2009.
13. Plett, G., “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation”, J. Power Sources, Cilt 134, 277-292, 2004.
14.Gelb, A., Applied Optimal Estimation, The M.I.T Press, Massachusetts, 1989.
15.Anderson, B.D.O. ve Moore, J.B., Optimal Filtering, Dover Publications, INC, Mineola, New York, 2005.
16. Buhmann, M.D., Radial Basis Functions: Theory and Implementation, Cambridge University Press, 2009.

Thank you for copying data from http://www.arastirmax.com