Buradasınız

GENÇ VE YAŞLI SERA TİPİ DOMATES {Lycopersicon esculentum, Mill.) YAPRAKLARINDA DOĞRUSAL ÖLÇÜMLERLE YAPRAK ALANI TAHMİN MODELİ

MODEL FOR PREDICTING LEAF AREA IN YOUNG AND OLD LEAVES OF GREENHOUSE TYPE TOMATO (Lycopersicon esculentum, Mill.) BY LINEAR MEASUREMENTS

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this study was to produce a simple leaf area estimation model by linear measurements for young and old leaves of greenhouse type tomato. Starting from early plant growth period to mature plant stage, a total of 150 leaves were collected to carry out linear measurements and produce a leaf area estimation model for tomato. Therefore, firstly a relationship between mean leaflet length (MLL) of a main compound tomato leaf and the length of the longest leaflet (LLL) of the top three leaflets of the main compound leaf (MLL(cm)=-0.36+1,02*LLL-0,02*LLL2, r2=0.98, Equation 1). Secondly, an equation was obtained by plotting actual leaf area measured by PLACOM Digital Planimeter against mean leaflet length (MLL), longest leaflet length of the top three leaflets of the main leaf (LLL) and longest leaflet width (LLW) of the top three leaflets by using multi-regression analysis. The leaf area estimation model was found as LA (cm2) =31,6-18.41*MLL+2.40*MLL2+0.45*LLL2*LLW, r2=0.99 (Equation 2). Standard errors of all subsets of the independent variables were found to be significant at p<0.001). Lastly, Equation 1 was combined with Equation 2 and final equation for leaf area estimation was obtained to be LA=31.6-18.41*(-0.36+1.02*LLL-0.02*LLL2)+2.40*(-0.36+1.02*LLL-0.02*LLL2) 2 +0.45*LLL2*LLW (Equation 3)
Abstract (Original Language): 
Bu araştırmanın amacı sera tipi domatesin genç ve yaşlı yapraklarında doğrusal ölçümlerle basit bir yaprak alanı tahmin modeli oluşturmaktır. Bitki gelişiminin başlangıç aşamasından başlayarak olgun safhaya kadar yaprak alanı tahmin modeli oluşturmak ve doğrusal ölçümler yapmak amacıyla toplam 150 yaprak toplandı. Bu amaçla, ilk olarak domates yaprağı ana bileşenlerinin ortalama yaprakçık uzunluğu (OYU) ve yaprak ana bileşenlerinin ucundaki en uzun üç yaprakçığın yaprakçık uzunluğu (YYU) arasındaki ilişki (OYU(cm)= -0.36+1,02*YYU -0,02*YYU2, r2=0.98, Eşitlik 1) belirlendi. İkinci olarak, çoklu regresyon analizi kullanılarak ortalama yaprakçık uzunluğu (OYU), ana yaprağın uç kısmındaki en uzun üç yaprakçığın uzunluğu (YYU), uç kısımdaki en uzun üç yaprakçığın genişliğine (YYG) karşılık gelen gerçek yaprak alanı dijital planimetre PLACOM ile belirlenerek bir eşitlik elde edildi. Yaprak alanı tahmin modeli, LA(cm2)=31,6-18.41*OYU +2.40* OYU 2+0.45*YYU2* YYG, r2=0.99 (Eşitlik 2) olarak bulunmuştur. Bağımsız değişkenlerin tüm alt verilerinin standart hataları p<0.001 düzeyinde önemli bulunmuştur. Son olarak, eşitlik 1 ile eşitlik 2 birleştirildiğinde nihai yaprak alanı tahmini için LA=31.6-18.41*(-0.36+1.02*YYU-0.02*YYU2)+2.40*(-0.36+1.02*YYU-0.02YYU2)2+0.45*YYU2*YYG (Eşitlik 3) eşitliği elde edilmiştir.
154-157

REFERENCES

References: 

Atherton JG; Rudich J (1986). The tomato crop. A scientific basis for improvement. Chapman and Hall Press. pp
158.
Çelik
H
; Uzun S (2002). Validation of leaf area estimation models (UZCELIK-I) evaluated for some horticultural plants. Pakistan Journal of Botany, 34(1):41-46.
Champagne C; Sinha N (2004). Compound leaves: equal to the sum of their parts. Development, 131:4401-4412.
Charles-Edwards AD; Doley D; Rimmington GM (1986). Modelling plant growth and development. Academic Press, London. p: 20-30.
Demirsoy H; Demirsoy L (2003). A validated leaf area prediction model for some cherry cultivars in Turkey. Pakistan Journal of Botany, 35(3):361-367.
Demirsoy H; Demirsoy L; Uzun S; Ersoy B (2004). Non¬destructive leaf area estimation in peach. European Journal of Horticultural Science, 69(4):144-146.
Dumas Y (1990). Interrelation of linear measurements and leaf area or dry matter production in young tomato plants. HortScience, 4(3):172-176.
Elsner EA; Jubb GL (1988). Leaf area estimation of Concord grape leaves from simple linear measurements. American Journal of Enol. and Viticulture, 39(1):95-97.
Evans GC (1972). The quantitative analysis of plant growth.
William Clowes and Sons Ltd., Oxford. Mohsenin NN (1980). Physical properties of plant and
animal materials. Gordon and Breach Science
Publishers, New York, London, Paris. pp. :79. Pedro Junior MJ; Ribeiro IJA; Martins FP (1989).
Determination of leaf area in the grapevine cv. Niagara
Rosada. Horticultural Abstracts, 59(1):207.
Rajendran PC; Thamburaj S (1987). Estimation of leaf area in watermelon by linear measurements. South Indian
Horticulture, 35(4):325-327. Rai A; Alipit PV; Toledo MB (1990). Estimation of leaf
area of French Bean (Phaseolus vulgaris, L.) using linear measurements. Horticultural Abstracts,
60(5):3405.
Ramkhelawan E; Brathwaite RAI (1992). Leaf area estimation by non-destructive methods in sour orange (Citrus aurantiumL.). Horticultural Abstracts,
62(3):2557.
Robins NS; Pharr DM (1987). Leaf area prediction models for cucumber from linear measurements. HortScience,
22(6):1264-1266.
Sirinivas K; Hedge DM (1993). Leaf area determination in muskmelon. Horticultural Abstrcts, 63(10):8054.
Uzun S (1996). The quantitative effects of temperature and light environment on the growth, development and yield of tomato (Lycopersicon esculentum, Mill.) and Aubergine (Solanum melongena, L.). Unpublished PhD thesis, University of Reading, Reading, England.
Uzun S; Çelik H (1999). Leaf area prediction models (Uzçelik-I) for different horticultural crops. Turkish Journal of Agriculture and Forestry, 23:645-650.
Yin K (1990). A study on the correlation between leaf form and leaf area in Ktoho grape (Vitis vinifera L.x Vitis labrusca L. cv. Red fuji), Horticultural Abstracts,
60(11):9366.

Thank you for copying data from http://www.arastirmax.com