You are here

Puzolanik Aktivite Tespit Yöntemleri: Fiziksel Metotlar

Puzzolanic Activity Detection Procedure: Physical Methods

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The term of puzzolonic activity is a general statement that refers to a chemical reaction of a puzzolanic material in alkali environement which consist of water-lime solution and the change of the result of this reaction. This mechanism is not a simple process but it includes serial process of chemical change and transformations which occurs as a result of mineralogical composition dissolution of the reaction elements. Chemical, physical, mechanical and analytical test methods are developed in order to find this modification that occurs during puzzolonic reaction. Even though number of researches are made for identifying the puzzolonic characteristics of different materials with some of these methods, overall analysis which involve all these methods are deficient in literature. In this research; only physical methods of these technics that identified puzzolonic activity, used for representing basic approaches and examples are given from several researches. Additionally, these methods are also evaluated generaly.
Abstract (Original Language): 
Puzolanik aktivite terimi, kireç ve su karışımının meydana getirdiği alkali ortam içerisinde puzolan özellikli bir maddenin kimyasal reaksiyonunu ve bu reaksiyon sonucu ortaya çıkan değişiklikleri ifade etmek için kullanılan genel bir ifadedir. Bu mekanizma, basit bir süreç olmayıp, reaksiyonda rol oynayan elemanların mineralojik kompozisyonun bozulmasıyla ortaya çıkan bir seri kimyasal değişim yada dönüşüm proseslerini içermektedir. Puzolanik reaksiyon sırasında meydana gelen bu değişiklikleri tespit etmek amacıyla kimyasal, fiziksel, mekanik ve analitik içerikli test yöntemleri geliştirilmiştir. Bu yöntemlerden birleşik olarak yada bazılarından yararlanarak çeşitli maddelerin puzolanlık karakteristiklerini belirlemek amacıyla birçok araştırma yapılmış olmakla birlikte, bahsedilen yöntemlerin topluca ele alınarak değerlendirildiği çalışmalar literatürde yetersizdir. Bu incelemede, puzolanik aktivitenin tespitinde uygulanan yöntemlerden sadece fiziksel metotlar ele alınıp, temel yaklaşımları açıklanmakta ve bu konuda yapılmış çeşitli çalışmalardan örnekler verilmektedir. Ayrıca bu yöntemlerin genel bir değerlendirmesi de yapılmaktadır.
21
39

REFERENCES

References: 

[1] Moise´s, F., Villar-Cocina, E., Sa´nchez de Rojas, M.I. ve Valencia-Morales, E. The effect that
different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in
sugar cane straw-clay ash/lime systems: Application of a kinetic–diffusive model, Cement and
Concrete Research, 2005; 35: 2137– 2142.
[2] Donatello, S., Tyrer, M. ve Cheeseman, C.R. Comparison of test methods to assess pozzolanic
activity, Cement and Concrete Composites, 2010: 32; 121–127.
[3] Greenberg, S.A. Reaction between silica and calcium hydroxide solution. 1. Kinetics in the
temperature range 30 to 85°C, Journal Physics Chemistry, 1961: 65; 1, 12-16.
[4] Rassk, E. ve Bhaskar, M.C. Pozzolanic activity of pulverized fuel ash, Cem. Concr. Res., 1975: 5,
363–376.
[5] Luxan, M.P., Madruga, F. ve Saavedra, J. Rapid evaluation of pozzolanic activity of natural
products by conductivity measurement, Cem. Concr. Res., 1989: 19, 63–68.
KURUGÖL
37
[6] Sugita, S., Shoya, M. ve Tokuda, H. Evaluation of pozzolanic activity of rice husk ash, Proceedings
of the 4th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural
Pozzolans in Concrete, Istanbul, vol. 1, Amer. Concr. Inst., Detroit, USA, pp. 495– 512, ACI SP-
132, 1992.
[7] Tashiro, C., Ikeda, K. ve Inoue, Y. Evaluation of pozzolanic activity by the electric resistance
method, Cem.Concr. Res., 1994: 24, 1133–1139.
[8] Villar-Cocina, E., Valencia-Morales, E., Gonza´lez-Rodri´guez, R. ve Herna´ndez-Ruı´z, J.,
Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity
measurement: A kinetic–diffusive model, Cement and Concrete Research, 2003: 33, 517–524.
[9] Wansom, S., Janjaturapan, S. ve Sinthupinyo, S. Pozzolanic Activity of Rice Husk Ash:
Comparison of Various Electrical Methods, Journal of Metals, Materials and Minerals, 2009: 19,
2, 1-7.
[10] Trusilewicz, L., Fernández-Martínez, F., Rahhal, V.ve Talero, R. TEM and SAED Characterization
of Metakaolin. Pozzolanic Activity, Journal of the American Ceramic Society, Special Issue:
BIO2011, 2012: 95, 9, 2989–2996.
[11] McCarter, W.J. ve Tran, D., “Monitoring pozzolanic activity by direct activation with calcium
hydroxide”, Constr. Build. Mater., 1996: 10(3), 179-184.
[12] Böke, H., Akkurt, S., İpekoğlu, B. ve Uğurlu, E. Characteristics of brick used as aggregate in
historic brick-lime mortars and plasters, Cement and Concrete Research, 2006: 36, 1115–1122.
[13] Çizer, Ö., Böke, H. İpekoğlu, B. Bazı Osmanlı dönemi hamam yapıları kubbe ve duvarlarında
kullanılan kireç harçlarının Özellikleri, 2.Ulusal Yapı Malzemesi Kongresi ve Sergisi, İTÜ,
İstanbul, 469-481, 6-8 Ekim 2004.
[14] Tashimaa, M.M., Sorianob, L., Monzób, J., Borracherob, M.V., Akasakia, J.L., Payá, J. New
method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical
conductivity measurements in lime:pozzolan suspensions, Materiales de Construcción, 2014: Vol.
64, Issue 316.
[15] Uzal, B., Turanlı, L., Yücel, H., Göncüoğlu M.C. ve Çulfaz, A. Pozzolanic activity of clinoptilolite:
A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan, Cement and
Concrete Research, 2010: 40, 398–404.
[16] Araceli, E.A., Monica, A.T., ve Monica, P. Characterization of ceramic roof tile wastes as
pozzolanic admixture, Waste Management, 2009: 29, 1666-1674.
[17] Velázquez, S., Monzó, J.M., Borrachero, M.V. ve Payá, J. Assessment of the Pozzolanic Activity
of a Spent Catalyst by Conductivity Measurement of Aqueous Suspensions with Calcium
Hydroxide”, Materials, 2014: 7, 2561-2576. doi:10.3390/ma7042561.
[18] Wansom, S., Janjaturaphan, S., Sinthupinyo, S. Characterizing pozzolanic activity of rice husk ash
by impedance spectroscopy, Cement and Concrete Research, 2010: 40, 1714–1722.
[19] Chuichi, T., Ko, I. ve Yoshihiro, I. Evaluation of pozzolanic activity by the electric resistance
measurement method, Cement and Concrete Research, 1994: 24/6; 1133–1139.
[20] Ali Akbar, R., Rahimeh, M. ve Moosa, K. Influence of zeolite additive on chloride durability and
carbonation of concretes, Applied mathematics in Engineering, Management and Technology
2014, The special issue in Management and Technology, 2014, 1081-1093.
[21] Ali Akbar, R., Amirreza, P., Mahdi, M. ve Faramarz, M. Practical evaluation of relationship
between concrete resistivity, water penetration, rapid chloride penetration and compressive
strength, Construction and Building Materials, 2472-2479, 2014.
[22] Moropoulou, A., Bakolas, A. ve Aggelakopoulou, E. Evaluation of pozzolanic activity of natural
and artificial pozzolans by thermal analysis, Thermochimica Acta, 2004: 420; 135–140.
Puzolanik Aktivite Tespit Yöntemleri
38
[23] Trusilewicz, L., Fernández-Martínez, F., Rahhal, V.ve Talero, R., TEM and SAED
Characterization of Metakaolin. Pozzolanic Activity, Journal of the American Ceramic Society,
Special Issue: BIO2011, 2012: 95/9; 2989–2996.
[24] Lee; S., Youn, J.K. ve Moon, H.S. Phase Transformation Sequence from Kaolinite to Mullite
Investigated by an Energy-Filtering Transmission Electron Microscope, Journal of American
Ceramic Society, 1999: 82; 2841-2848.
[25] IIic, B.R., Mitrovic, A.A., Milicic, L.R. Thermal Treatment of Kaolin Clay to obtain Metakaolin,
Hem. ind. 2010: 64(4) 351–356. DOI: 10.2298/HEMIND100322014Iç.
[26] Pera, J. Metakaolin and calcined clays. Cement and Concrete Composities. 2001: 23.
[27] Mitrovic, A., Zdujic, I.M. Mechanochemical treatment of Serbian kaolin clay to obtain a highly
reactive pozzolana, Journal of. Serb. Chem. Soc. 2013: 78 (4), 579–590.
[28] Lee, S., Youn, J.K., Moon, H.S. Phase Transformation Sequence from Kaolinite to Mullite
Investigated by an Energy-Filtering Transmission Electron Microscope, Journal of American
Ceramic Society. 1999: 82 (10), 2841-2848.
[29] Frias Rojas, M. ve Cabrera, J. The effect of temperature on the hydration rate and stability of the
hydration phases of metakaolin–lime–water systems, Cement and Concrete Research. 2002,
32,133–138.
[30] Ramadhansyah, R., Mahyun, A.W., Salwa, M.M., Abu Bakar, B.H., Megat Johari, M.A. ve Wan
Ibrahim, M.H. Thermal Analysis and Pozzolanic Index of Rice Husk Ash at Different Grinding
Time, International Conference on Advances Science and Contemporary Engineering (ICASCE
2012), 24-25, Oktober, 2012.
[31] Parhizkar, T., Najimi; M., Pourkhorshidi, A.R., Jafarpour, F., Hillemeier, B. ve Herr, R. Proposing
a New Approach for Qualifcation of Natural Pozzolans, Scientia Iranica, Sharif University of
Technology, 2010: 17/6; 450-456.
[32] Pourkhorshidi, A.R., Najimi, M., Parhizkar, T., Hillemeier, B. ve Herr, R. A comparative study of
the evaluation methods for pozzolans, Advances in Cement Research, 2010: 22(3); 157-164.
[33] Gava, G.P. and Prudencio JR, L.R. Pozzolanic activity tests as a measure of pozzolans performance:
Part 1, Magazine of Concrete Research, 2007: 59(10); 729-734.
[34] Gava, G.P. and Prudencio JR, L.R. Pozzolanic activity tests as a measure of pozzolans performance:
Part 2, Magazine of Concrete Research, 2007: 59(10); 735-741.
[35] Paya, J., Monzo, J., Borrachero, M.V., Vela´zquez, S., ve Bonilla, M. Determination of the
pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on
FC3R–lime pastes, Cement and Concrete Research, 2003: 33; 1085–1091.
[36] Roszczynialski, W. Determınatıon of pozzolanıc actıvıty of materials by thermal analysis, Journal
of Thermal Analysis and Calorimetry, 2002: 70; 387–392.
[37] He, C., Makovicky, E., Osbaeck, B. Thermal stability and pozzolanic activity of calcined illite,
Applied Clay Science, 1995: 9; 337-354.
[38] TS EN 196-8 Çimento deney yöntemleri - Bölüm 8: Hidratasyon ısısı - Çözelti yöntemi, 2011.
[39] Poellmann, H., Kuzel, H.J. ve Meyer, H.W. The usage of heat-flow calorimetry in cement
chemistry- Construction and application of a low coast high-sensitive calorimeter, Proc. XIIIth Int.
Con. On Cement Micr. Tampa, (edited by J. Bayles, G. R. Gouda & A. Nisperos), pp. 254-272,
1991.
[40] Wu, Z.Q. ve Young, J.F. The hydration of tricalcium silicate in the presence of colloidal silica,. J
Mater Sci.; 1984: 19; 3477–86.
[41] De Silva, P.S. ve Glasser, F.P. Hydration of cements based on metakaolin: thermochemistry, Adv
Cem Res.; 1990: 3; 167–77.
[42] Garcia de Lomas, M., Sanchez de Rojas, M.I. ve Frias, M. Pozzolanic reaction of a spent fluid
catalytic cracking catalyst in FCCcement mortars, J Therm Anal Calorim. 2007: 90; 443–447.
KURUGÖL
39
[43] Snellings, R., Mertens, G. ve Elsen, J. Calorimetric evolution of natural zeolites, Journal of Therm
Anal Calorim. 2010: 101; 97–105.
[44] Gruyaert, E., Robeyst, N. ve De Belie, N. Study of the hydration of Portland cement blended with
blast-furnace slag by calorimetry and thermogravimetry, J Therm Anal Calorim. 2010: 102; 941–
51.
[45] Baert, G., Hoste, S., De Schutter, G, ve De Belie, N. Reactivity of fly ash in cement paste studied
by means of thermogravimetry and isothermal calorimetry, J Therm Anal Calorim. 2008: 94; 485–
92.
[46] Ivindra, P. ve Hansen, W. Investigation of blended cement hydration by isothermal calorimetry and
thermal analysis, Cement and Concrete Research, 2005: 35; 1155– 1164.
[47] Siler, P., Kratky, J., De Belie, N. Isothermal and solution calorimetry to assess the effect of
superplasticizers and mineral admixtures on cement hydration, J Therm Anal Calorim. 2012: 107,
313–320. DOI 10.1007/s10973-011-1479-8.
[48] Senhadji, Y., Escadeillas, G., Khelafi, H., Mouli, M., Benosman, A.S. Evaluation of natural
pozzolan for use as supplementary cementitious material, European Journal of Environmental and
Civil Engineering, 2012: Vol. 16, No. 1, 77–96.
[49] Singh, N.B., Das, S.S., Singh, N.P. ve Dwivedi. Studies on SCLA composite Portland cement,
Indian Journal of Engineering and Materials Sciences, 2009: 16; 415-422.
[50] Uchikawa, H., and Uchida, S. Influence of Pozzolana on the Hydration of C3A. Proceedings of the
7th International Congress on the Chemistry of Cement, Sub-Theme IV, Paris, France, 1980.
[51] Erdoğan, T.Y. Beton. ODTÜ Geliştirme Vakfı ve Yayıncılık A.Ş. Ankara. 2003.
[52] Derya, Ö. Early Heat Evolution in Natural Pozzolan-Incorporated Cement Hydration. A Thesis
Submitted to the Graduate School of Natural And Appleed Sciences of Middle East Technical
University, s. 83, 2012.
[53] Dale, P.B., Alejandro, D.H., Daniel, G.M. Comparison of ASTM C311 Strength Activity Index
Testing vs. Testing Based on Constant Volumetric Proportions, Journal of ASTM International,
2011: Vol. 9 (1); pp.7.

Thank you for copying data from http://www.arastirmax.com