EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 6, No. 3, 2013, 363-364 ISSN 1307-5543 – www.ejpam.com

Dickson's Method for Generating Pythagorean Triples Revisited

Josef Rukavicka

Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract. The Dickson's method for generating Pythagorean triples states that the integers a = r + s, b = r + t, c = r + s + t form a *Pythagorean triple* (a, b, c) on condition that $r^2 = 2st$, where r, s, t are positive integers. This paper presents a new simple proof of this method.

2010 Mathematics Subject Classifications: 11D45

Key Words and Phrases: Pythagorean triples, Dickson's method, Diophantine approximation

1. Introduction

A triple (a, b, c) of positive integers is called a *Pythagorean triple* in case that $a^2 + b^2 = c^2$. There are several methods for generating *Pythagorean triples*. In this paper we investigate the Dickson's method, [1], that states that the integers a = r + s, b = r + t, c = r + s + t form a *Pythagorean triple* (a, b, c) on condition that $r^2 = 2st$, where r, s, t are positive integers. The paper presents a new simple proof of this method.

2. Dickson's Method for Generating Pythagorean Triples

Theorem 1. Given positive integers k, q, p, where k > q and let c = k + p, b = p + q, a = k. Then $a^2 + b^2 = c^2$ if and only if $q^2 = 2p(k - q)$.

Proof. We will show a bijection between triples (k, q, p) and (a, b, c). The bijection is depicted in Figures 1a and 1b (there are two examples for k = 8, q = 4, p = 2, a = k = 8, b = p + q = 6, c = k + p = 10 and k = 8, p = 9, q = 6, a = k = 8, b = p + q = 15, c = k + p = 17).

© 2013 EJPAM All rights reserved.

Email addresses: josef.rukavicka@seznam.cz, rukavij@fel.cvut.cz

Figure 1: Examples of bijections between triples with k = 8 varying q and p.

The bijection consists in transforming the grid of $k \times k$ squares into an object that uniquely determines a *Pythagorean triple* (a, b, c). The crucial observation is that q^2 is divisible by 2(k-q) and hence the squares from the grid of q^2 squares can be equally separated in order to build up the *L*-shaped object on the right side of a figure; that object represents a *Pythagorean triple* (k, q + p, k + p) = (a, b, c). To see this just note the *L*-shaped object is composed of k^2 squares and adding $(p+q)^2$ squares produces $(k+p)^2$ squares. On the other hand, given an *L*-shaped object composed of k^2 squares, then k, q, p are uniquely determined. Also note that (b, a, c) and (a, b, c) will yield different values of (k, p, q).

References

[1] L.E. Dickson. History of the theory of numbers, vol. 2: Diophantine analysis. *Carnegie Institution of Washington, Publication No. 256*, 2:169, 1920.