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Abstract. The Dickson’s method for generating Pythagorean triples states that the integers a = r + s,

b = r + t, c = r + s+ t form a Pythagorean triple (a, b, c) on condition that r2 = 2st, where r, s, t are

positive integers. This paper presents a new simple proof of this method.
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1. Introduction

A triple (a, b, c) of positive integers is called a Pythagorean triple in case that a2+ b2 = c2.

There are several methods for generating Pythagorean triples. In this paper we investigate the

Dickson’s method, [1], that states that the integers a = r + s, b = r + t, c = r + s+ t form a

Pythagorean triple (a, b, c) on condition that r2 = 2st, where r, s, t are positive integers. The

paper presents a new simple proof of this method.

2. Dickson’s Method for Generating Pythagorean Triples

Theorem 1. Given positive integers k,q, p, where k > q and let c = k + p, b = p + q, a = k.

Then a2+ b2 = c2 if and only if q2 = 2p(k− q).

Proof. We will show a bijection between triples (k,q, p) and (a, b, c). The bijection is

depicted in Figures 1a and 1b (there are two examples for k = 8, q = 4, p = 2, a = k = 8,

b = p + q = 6, c = k + p = 10 and k = 8, p = 9, q = 6, a = k = 8, b = p + q = 15,

c = k+ p = 17).
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(a) q = 4 and p = 2

(b) q = 6 and p = 9

Figure 1: Examples of bijections between triples with k = 8 varying q and p.

The bijection consists in transforming the grid of k × k squares into an object that uniquely

determines a Pythagorean triple (a, b, c). The crucial observation is that q2 is divisible by

2(k−q) and hence the squares from the grid of q2 squares can be equally separated in order to

build up the L-shaped object on the right side of a figure; that object represents a Pythagorean

triple (k,q+ p, k+ p) = (a, b, c). To see this just note the L-shaped object is composed of k2

squares and adding (p+ q)2 squares produces (k+ p)2 squares. On the other hand, given an

L-shaped object composed of k2 squares, then k,q, p are uniquely determined.

Also note that (b, a, c) and (a, b, c) will yield different values of (k, p,q).
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