You are here

Farklı çatlak boyuna sahip plakada gerilme yoğunluğunun nümerik ve sonlu elemanlar yöntemi ile analizi

Prediction on Ki for different crack length and inclined in single edge crack plate theoretical and fem

Journal Name:

Publication Year:

Abstract (2. Language): 
The stress intensity factor is a fundamental quantity that governs the stress field near the crack tip. The stress intensity factor depends on both the geometrical configuration and the loading conditions of the body. A number of methods have been used for the determination of stress intensity factors. They may be classified as theoretical (Westergaard semi-inverse method and method of complex potentials); numerical (Green's function, weight functions, boundary collocation, alternating method, integral transforms, continuous dislocations and finite elements methods), and experimental (photo elasticity, caustics, and combinations of these methods). The stress field in the neighborhood of a point of the border of an elliptical crack is a combination of the opening-mode, sliding-mode and tearing-mode, as for a through crack in a plate, and it is governed by the values of the corresponding stress intensity factors, KI, KII and KIII. These factors are independent of the coordinate variables and depend only on the position of the point at the crack front, the nature of loading and the crack geometry. Irwin presented a simplified model for the determination of the plastic zone attending the crack tip under small-scale yielding. He focused attention only on the extent along the crack axis and not on the shape of the plastic zone, for an elastic-perfectly plastic material. The universal availability of powerful, effective computational capabilities, usually based on the finite element method, has altered the use of and the need for stress concentration factors. Often a computational stress analysis of a mechanical device, including highly stressed regions, is shown, and the explicit use of stress concentration factors is avoided. Alternatively, a computational analysis can provide the stress concentration factor, which is then available for traditional design studies The elastic stress distribution of the case of an elliptical hole in an infinite-width thin element in uniaxial tension has been determined. At the edge of the elliptical hole, the sum of the stress components, óx and óy is given by the other investigators. Photo elastic tests of tension members with a transverse slit connecting two small holes are in reasonable agreemenet with the foregoing, take into consideration the accuracy limits of the photo elastic test. The “equivalent ellipse” concept ise useful for the ovaloid and other openings sach as two holes connected by a slit. A shape is enveloped by an ellipse (same major axis a and minor radius r) the KI values for the shape and equivalent ellipse may be nearly same. Aim of this study is to investigate, stress intensity factor (KI) by using fem and theoretical formulations of rectangular plate with single edge crack. (KI) was obtained for different crack length (a) and crack angle (è), and results are compared. In addition, contour plot of stress field distribution was obtained for different normal stress (óy= 50, 75 and 100 MPa), at single edge crack plate. óx, óy, ôxy and von-Misses stress field distribution was investigated contour plot for different crack length a =1.00, 1.25 and 1.5 mm. By using empirical formulations and Ansys solutions were compared KI results, and among these Gross’s solution is considered to be best with finite element method (FEM) solution.
Abstract (Original Language): 
Gerilme .iddeti faktoru catlak ucu yak.n.ndaki gerilme alan. duzenleyen temel bir buyukluktur. Gerilme .iddet faktoru de geometrik konfigurasyon ve cismin yukleme ko.ullar.na ba.l.d.r. Farkl. yontemler kullan.larak bir dizi gerilme .iddeti faktorleri tespit edilmi.tir. Bu yontemler; teorik (Westergaard yar. ters yontem ve karma..k potansiyelleri yontemi) say.sal (Green fonksiyonu, a..rl.k fonksiyonlar., s.n.r kollokasyon, yontem alternatif donu.umleri, integral, surekli c.k.k ve sonlu elemanlar yontemleri) ve deney (foto.raf esneklik, kostiklere ve bu yontemlerin kombinasyonlar.) olarak s.n.fland.r.labilir. Bir eliptik catla..n yak.n.ndaki bir noktada olu.an gerilme alan.; ac.lma modu, duzlem ici kayma modu, duzlem d... kayma modu olarak incelenmektedir. Bu faktorlerin koordine de.i.ken ba..ms.zd.r. Bu cal..man.n amac. tek kenar.nda catlak bulunan dikdortgen plakan.n teorik hesaplamalar ve sonlu elamanlar metodunu kullanarak gerilme yo.unlu.u faktorunu (KI) incelemektir. Farkl. catlak boyu (a=1.00, 1.25 ve 1.5 mm) ve farkl. ac.lar gerilme yo.unlu.u elde edilmi. ve sonuclar kar..la.t.r.lm..t.r. Ayr.ca icin gerilme (ƒĞy=50, 75 ve 100 MPa) alt.nda plakan.n gerilme yo.unlu.u faktoru her iki yontem ile elde edilmi.tir. Soz konusu yukleme .artlar.nda, ƒĞx, ƒĞy, ƒÑxy ve von-Mises gerilmeleri icin plaka yuzeyinde ve catlak civar.nda meydana gelen gerilme alan da..l.m. grafikleri gosterilmi.tir. Ampirik sonuclar., ozellikle Gross taraf.ndan geli.tirilen formulasyon sonuclar.n.n ve Ansys kullan.larak elde edilen (KI) sonuclar.yla oldukca yak.n de.erler elde edilmi.tir.
61-69

REFERENCES

References: 

ANSYS User’s Manuel (Version 9.0).
Bouiadjra B., Benguediab M., Elmeguenni M.,
Belhouari M., Aziz B. M. N.,(2008). Analysis of
the effect of micro-crack on the plastic strain
ahead of main crack in aluminium alloy 2024 T3,
Computer Material Science, 42 , 100–106
Dirikolu M.H., Aktas A., (2000). Analytical and
finite element comparisons of stress intensity
factors of composite materials, Composite
Structure, 50, 99-102.
Griffith, A.A., (1920). The Phenomena of Rupture
and Flow in Solids, Philos. Trans., R. Soco.
Lond., Ser. A., Vol. 221,
Irwin G.R., Fracture Dynamics, Fracture of Metals,
ASM, 1948, 147-166Bouchard O., Bay F.,
Chastel Y., (2003). Numerical modeling of crack
propagation: automatic remeshing and
comparison of different criteria, Computer
Method Applied Mechanical Engineering, 192,
3887–3908
Madenci E., Güven İ., (2006). The finite Elementh
Method and applications in Engineering Using
Ansys, Springer Science-Buisness Media Inc.,
Nakasone Y.S., Yoshimoto T.A., (2006). Stolarski,
Engineering Analysis With ANSYS
Nikbakht M., Choupani N., (2008). Fracture
Toughness Characterization of Carbon-Epoxy
Composite using Arcan Specimen, Inter. J.
Mechanical Industrial and Aerospace
Engineering. 2(4)
Pilkey W.D., Pilkey D.F., Peterson's Stress
Concentration Factors, 3rd. ed, John Wiley &
Sons, Inc, New York, 2008 Software, Elsevier
Publishing,
Sun H., Rajendran S., Song D. Q., 1998, Finite
Element Analysis on Delamination Fracture
Toughness of Composite Specimens,
Proceedings of 2nd Asian ANSYS User
Conference, Nov 11-13, Singapore.
Tada H., Paris P.C., Irwin G.R., (1934). The Stress
Analysis of Cracks Handbook, 3rd. Ed., ASME
Pres.
Yan X., (2006). Multiple crack fatigue growth
modeling by displacement discontinuity method
with crack-tip elements, Applied Mathematical
Modeling, 30, 489–508.
Zhang H., (2009). Simulation of crack growth using
cohesive crack method Applied Mathematical
Modelling In Press,

Thank you for copying data from http://www.arastirmax.com