You are here

8. Sınıf Öğrencilerinin Sözel Problemler ve Değişken Kavramı Arasında İlişki Kurabilme Becerileri

Share
Eight Grade Students’ Connection Skills between Word Problems and the Concept of Variable
Author NameUniversity of AuthorFaculty of Author

Journal Name:

Volume:

Publication Year:

Number:

Sayfa Aralığı:: 
275-284

Publication Language:

Abstract (Original Language): 
Bu çalışma ilköğretim 8. sınıf öğrencilerinin sözel problemler ve matematiğin temel kavramlarından biri olan değişken kavramı arasındaki ilişki kurabilme becerilerini belirlemeyi hedeflemektedir. Araştırmanın örneklemini 158 İlköğretim 8. sınıf öğrencisi oluşturmaktadır. Çalışmanın örnekleminin seçiminde, olasılık temelli örnekleme yöntemi içinde yer alan küme örnekleme yöntemi kullanılmıştır. Bu çalışmada nitel bir metot (durum çalışması) kullanılmıştır. Çalışmada veri toplama aracı olarak öğrencilere bir kağıt- kalem testi uygulanmıştır. Çalışmadaki veriler, öğrencilerin teste vermiş oldukları cevaplar ve öğrencilerle yapılan mülakatlar sonucu elde edilmiştir. Araştırma sonucunda, öğrencilerin büyük bir kısmının matematiksel bir ifadeyi, ya da bir denklemi, ya da matematiksel bir değişkeni bir problem cümlesine dönüştürmede oldukça zorlandıkları görülmüştür. Öğrenciler matematiksel dili anadillerine dönüştürmekte sıkıntı yaşamaktadırlar.
Abstract (2. Language): 
This study aims at determining eight grade students’ connection skills between word problems and the concept of variable. The sample of this research consisted of 158 eight grade students. In selecting of the sample of this study, the group sampling methods in probability sampling methods were used. In this study, a qualitative method (case study design) was used. A paper-pencil test was applied to the students as a data collecting tools. The data in this study were obtained from the students’ answers to test and the interviews. Results show that the majority of the students have a difficulty in converting a mathematical statement or an equation or a mathematical variable to a problem sentence. The students also have difficulties in converting mathematical language into their native language.

REFERENCES

References: 

Akgün, L. ve Özdemir, M.E. (2006). Students’ understanding of the variable as general number and unknown: a case study, The Teaching of Mathematics, 9 (1), 45-51.
Balyta, P. (1999). The effects of using motion detector technology to develop conceptual understanding of functions through dynamic representation in grade 6 students, A thesis in the Department of Mathematics and Statistics, presented in partial fulfillment of the requirements for the degree of master in the teaching of Mathematics at Concordia University, Montreal, Quebec, Canada.
Çepni, S. (2001). Araştırma ve proje çalışmalarına giriş. Trabzon: Erol Ofset.
Graham, A.T. ve Thomas, M.O.J., (2000). Building a versatile understanding of algebraic variables with a graphic calculator, Educational Studies in Mathematics, 41, 265-282.
Haspekian, M. (2003). Between arithmetic and algebra: a space for the spreadsheet? Contribution to an instrumental approach. Tools and technologies in mathematical didactics. Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education, CERME3, Bellaria, Italy, 27 Feb - 2 Mar.
Kieran, C. (1981). Concepts associated with the equality symbol, Educational Studies in Mathematics, 12, 317–326.
Kieran, C. (1989). The early learning of algebra: A structural perspective. In S. Wagner & Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 33-56). Reston, VA: National Council of Teachers of Mathematics.
Linchevski, L. ve Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra: Operating on the unknown in the context of equations. Educational Studies in Mathematics, 30 (1), 39–65.
Philipp, R.A. (1992). The many uses of algebraic variables, The Mathematics Teacher, 85 (7), 557-561.
Rosnick, P. (1981). Some misconceptions concerning the concept of variable. Mathematics Teacher, 74 (6), 418–420. (26.01.2003).
Sasman, M. Linchevski, L., ve Olivier, A. (1997). Reconceptualising school algebra, Algebra Rationale. (05.05.2004).
Schoenfeld, A.H. ve Arcavi, A. (1988). On the meaning of variable. Mathematics Teacher, 81 (9), 420–7. (29.12 2003).
Stacey, K., and MacGregor, M. (1997). Ideas about symbolism that students bring to algebra. The Mathematics Teacher, 90 (2), 110–113.
Tabach, M., ve Friedlander, A. (2003). The role of context in learning beginning algebra, Proceedings of the Third Conference of the European Society for Research in Mathematics Education, 28 February - 3 March 2003, Bellaria, Italia.
Tall, D.O. ve Vinner S. (1981). Concept image and concept definition in mathematics, with special reference to limits and continuity, Educational Studies in Mathematics, 12, 151–169. (20.02.2004).
Thomas, M.O.J. ve Tall, D.O. (1991). Encouraging versatile thinking in algebra using the computer. Educational Studies in Mathematics, 22 (2), 125–147. (21.02.2004)
Wagner, S. (1983). What are these things called variables? Mathematics Teacher, 76 (10): 474–479. . (25.07.2003).
Yıldırım, A. ve Şimşek, H. (2000). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınları, 2. Baskı.

Thank you for copying data from http://www.arastirmax.com