BULANIK MANTIK (FUZZY LOGIC) VEJEOFİZİKTE KULLANIM ALANLARI: SİSMOLOJİ ÖRNEĞİ

Abstract (2. Language): 
With the effect of advancing technology, Fuzzy logic has become one of the most common methods used in solving problems during the recent years. Solutions of the many ill defined/unidentified events in nature/earth are made possible by means of fuzzy logic. Wide ranges of applications and obtaining successful results are caused the increasing interest on this method. Applications of Fuzzy logic on Geophysics are also increasing day by day. It is used on particularly inversion of seismic, electromagnetic and resistivity data, prediction of some physical parameters and estimation studies. The aim of this study is to compile the articles which are about Fuzzy logic application on geophysics and to summarize its intended purpose. Analyzing of the Earthquake data of Western Anatolia Using with Adaptive Neurofuzzy Inference System, is given an example of this method as a seismological application.
Özet (Orjinal Dil): 
Bulanık mantık, teknolojinin de etkisiyle son yıllarda birçok problemin çözümünde yaygın olarak kullanılan yöntemlerden biridir. Doğada kesin olarak tanımlanamayan birçok olayın bulanık mantık yardımıyla çözümleri mümkün hale gelmiştir. Uygulama alanının geniş olması ve birçok problemin çözümünde başarılı sonuçların elde edilmesi bu yönteme olan ilgiyi arttırmıştır. Bulanık mantığın jeofizik alanındaki uygulamaları da giderek artmaktadır. Özellikle sismik, elektromanyetik ve özdirenç gibi yöntemlerin ters çözümünde ayrıca parametre tayini ve ön kestirim gibi uygulamalarda kullanılmaktadır. Bu çalışmada bulanık mantığın günümüze kadar olan jeofizik uygulamaları derlenmiş ve yaygın olarak kullanım amaçları özetlenmeye çalışılmıştır. Batı Anadolu deprem katalog verilerinin Uyarlanabilir Yapay Sinir-Bulanık Mantık Çıkarım Sistemi (Adaptive Neurofuzzy Inference System) (UYBÇS) ile değerlendirilmesi üzerine örnek bir çalışmaya yer verilmiştir.
Referanslar: 

Acar M., Haberler W. M., Ayan T. (2008): “Bulanık Çıkarım Sistemler ile Heyelan
Bloklarının Belirlenmesi: Gürpınar Örneği”, Jeodezi, Jeoinformasyon ve Arazi Yönetimi
Dergisi,Cilt 1/98.
Akgün A., Sezer E. A., Nefeslioğlu H. A., Gökçeoğlu C., Pradhan B. (2012): “An Easy-toUse MATLAB Program (MamLand) for the Assessment of Landslide Susceptibility Using
a Mamdani Fuzzy Algorithm”, Computers and Geosciences,Cilt 38, s.23–34.
Aksoy B., Ercanoglu M. (2012): “Landslide İdentification and Classification by Object-Based
Image Analysis and Fuzzy Logic: An Example From the Azdavay Region
(Kastamonu,Turkey)”, Computers and Geosciences, Cilt 38, s.87-98.
Ali M., Chawathe A. (2000): “Using Artificial Intelligence to Predict Permeability From
Petrographic Data”, Computers and Geosciences,Cilt 26, s.915-925.
Alvanitopoulos P. F., Andreadis I., Elenas A. (2010): “ Neuro-Fuzzy Techniques for the
Classification of Earthquake Damages in Buildings”, Measurement,Cilt 43, s.797–809.
Aminzadeh F. (2005): “Applications of AI and Soft Computing for Challenging Problems in
the Oil Industry”, Journal of Petroleum Science and Engineering,Cilt 47, s.5–14.
Anifowose F., Abdulraheem A. (2011): “Fuzzy Logic-Driven and SVM-Driven Hybrid
Computational Intelligence Models Applied to Oil and Gas Reservoir Characterization”,
Journal of Natural Gas Science and Engineering,Cilt 3, s.505-517.
Arrell K. E., Fisher P. F., Tate N. J., Bastin L. (2007): “A Fuzzy C-Means Classification of
Elevation Derivatives to Extract the Morphometric Classification of Landforms in
Snowdonia, Wales”, Computers and Geosciences, Cilt 33, s.1366–1381.
Ataei M., Khalokakaei R., Hossieni M. (2009): “Determination of Coal Mine Mechanization
Using Fuzzy Logic”, Mining Science and Technology,Cilt 19, s.0149–0154.
Batyrshin I., Sheremetov L., Markov M., Panova A. (2005): ”Hybrid Method for Porosity
Classification in Carbonate Formations”, Journal of Petroleum Science and Engineering,
Cilt 47, s.35–50.
Baykal N., Beyan T. (2004): “ Bulanık Mantık Uzman Sistemler ve Denetleyiciler”, Bıçaklar
Kitabevi, Yayın No:10.
Bezdek J. C., Ehrlich R., Full W. (1984): “FCM: The Fuzzy C-Means Clustering Algorithm”,
Computer and Geoscience Volume, Cilt 10, s.191–203.
Bodur K., Gökalp H. (2011): “Deprem Konumlarının Belirlenmesinde Bulanık Mantık
Yaklaşımı”, 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 11-14 ekim 2011,
Odtü, Ankara.
Brown C. B., (1985): “The Use of Fuzzy Sets in Seismic Engineering in the USA”, In: Feng,
D. Y., and Liu, X. H. (eds.), Fuzzy Mathematics in Earthquake Researches, Seismological
Press, Beijing, s.2–7.
Choi K., Cho W., Kim D., Lee I. (2005): “Active Control for Seismic Response Reduction
Using Modal-Fuzzy Approach”, International Journal of Solids and Structures, Cilt 42,
s.779–794.
Demicco R. V., Klir G. (2001): “Stratigraphic Simulations Using Fuzzy Logic to Model
Sediment Dispersal”, Journal of Petroleum Science and Engineering,Cilt 31, s.135–155.
Duan Z., Pang Z., Wang X. (2011): “Sustainability Evaluation of Limestone Geothermal
Reservoirs with Extended Production Histories in Beijing and Tianjin, China”
Geothermics,Cilt 40, s.125–135.
Dubois M. K., Bohling G. C., Chakrabarti S. (2007): “Comparison of Four Approaches to a
Rock Facies Classification Problem”,Computers and Geosciences,Cilt 33, s.599–617.
Duru N., Kurtulmuş C., Canbay M. (2008): “Gürültü Etkilerinin Bulanık Mantık Temelli Bir
Yöntemle Analizi”, Uygulamalı Yerbilimleri, Cilt 2, (Ekim- Kasım 2008).
El-Sebakhy E. A. (2009): “Data Mining in Forecasting PVT Correlations of Crude Oil
Systems Based on Type1 Fuzzy Logic Inference Systems”, Computers and Geosciences,
Cilt 35,s.1817–1826.
Farifteh, J.,, Farshad, T, A., George, R.J., (2006): “ Assessing salt-affected soils using remote
sensing, solute modelling and geophysics”, Geoderma,Cilt130, s. 191–206.
Feng D. Y., Lou S. B., Lin M. Z., Gu J. P., Zhong T. J., Chen H. C. (1982): “Application of
Fuzzy Mathematics in Evaluating Earthquake İntensity”, Earthquake Engineering and
Engineering Vibration, Cilt 2, Sayı 3, s.16–28.
Finol J., Guo Y. K., Jing X. D. (2001): “A Rule Based Fuzzy Model for the Prediction of
Petrophysical Rock Parameters”, Journal of Petroleum Science and Engineering, Cilt 29,
s.97-113.
Foody G. M. (2000): “Estimation of Sub-Pixel Land Cover Composition in the Presence of
Untrained Classes”, Computers and Geosciences,Cilt 26, s.469-478.
Frances A. P., Lubczynski M. V. (2011): “Topsoil Thickness Prediction at the Catchment
Scale by Integration of Invasive Sampling, Surface Geophysics, Remote Sensing And
Statistical Modeling”,Journal of Hydrology,Cilt 405, s.31–47.
Ghayoumian J., Saravi M. M., Feiznia S., Nouri B., Malekian A. (2006): “Application of GIS
Techniques to Determine Areas Most Suitable for Artificial Groundwater Recharge in a
Coastal Aquifer in Southern Iran”,Journal of Asian Earth Sciences Cilt 30, s.364–374.
Gholami V., Mohaghegh S. D. (2011): “Fuzzy Upscaling in Reservoir Simulation: An
Improved Alternative to Conventional Techniques”, Journal of Natural Gas Science and
Engineering,Cilt 3, s.706-715.
Gökçeoğlu C. (2002): “A Fuzzy Triangular Chart to Predict the Uniaxial Compressive
Strength of the Ankara Agglomerates from Their Petrographic Composition”, Engineering
Geology, Cilt 66, s.39–51.
Grandjean G., Hibert C., Mathieu F., Emilie G., Malet J. P. (2009): “Monitoring Water Flow
in a Clay-Shale Hillslope from Geophysical Data Fusion Based on a Fuzzy Logic
Approach”,C. R. Geoscience,Cilt 341, s.937–948.
Helmy T., Fatai A., Faisal K. (2010): “Hybrid Computational Models for the Characterization
of Oil and Gas Reservoirs”, Expert Systems with Applications,Cilt 37, s.5353–5363.
Henley S. (2006): “The Problem of Missing Data in Geoscience Databases”, Computers and
Geosciences,Cilt 32, s.1368–1377.
Hibert C., Grandjean G., Bitri A., Travelletti J., Malet J. P. (2012): “ Characterizing
Landslides Through Geophysical Data Fusion: Example of the La Valette Landslide
(France)”, Engineering Geology,Cilt 128, s.23–29.
Hsieh B., Lewis C., Lin Z. (2005): “Lithology Identification of Aquifers from Geophysical
Well Logs and fuzzy Logic Analysis: Shui-Lin Area, Taiwan”, Computers and
Geosciences, Cilt 31, s.263–275.
Jim J. (2005): “Reservoir Properties Determination Using Fuzzy Logic and Neural Networks
from Well Data in Offshore Korea”, Journal of Petroleum Science and Engineering, Cilt
49,s.182–192.
Khoukhi A. (2012): “Hybrid Soft Computing Systems for Reservoir PVT Properties
Prediction”, Computers and Geosciences, Cilt 44, s.109–119.
Klose C. D. (2002): “Fuzzy Rule-Based Expert System for Short-Range Seismic Prediction”,
Computers and Geosciences,Cilt 28, s.377–386.
Li Y., Anderson S. R. (2006): “Facies Identification from Well Logs: A Comparison of
Discriminant Analysis and Naïve Bayes Classifier”, Journal of Petroleum Science and
Engineering, Cilt 53, s 149–157.
Luchetta A., Manetti S. (2003): “ A Real Time Hydrological Forecasting System Using a
Fuzzy Clustering Approach”,Computers and Geosciences,Cilt 29, s.1111–1117.
Luo X., Dimitrakopoulos R. (2003): “ Data-Driven Fuzzy Analysis in Quantitative Mineral
Resource Assessment”,Computers and Geosciences,Cilt 29, s.3-13.
Marano G. C., Morrone E., Sgobba S., Chakraborty S. (2010): “ A fuzzy Random Approach
of Stochastic Seismic Response Spectrum Analysis”, Engineering Structures, Cilt 32,
s.3879–3887.
McBratney A. B., Mendonça S. M. L., Minasny B. (2003): “On Digital Soil Mapping”,
Geoderma, Cilt 117, s.3–52.
Metternicht G. I., Zinck J. A. (2003): “Remote Sensing of Soil Salinity: Potentials and
Constraints”,Remote Sensing of Environment,Cilt 85, s.1 –20.
Miles S. B., Keefer D. K. (2009): “Evaluation of CAMEL-Comprehensive Areal Model of
Earthquake-Induced Landslides”, Engineering Geology,Cilt 104, s.1-15.
Nayak P. C., Sudheer K. P., Rangan D. M., Ramasastri K. S. (2004): “A Neuro-Fuzzy
Computing Technique for Modeling Hydrological Time Series”, Journal of Hydrology,
Cilt 291, s.52–66.
Nikravesh M., Aminzadeh F. (2001): “Mining and Fusion of Petroleum Data with Fuzzy
Logic and Neural Network Agents”, Journal of Petroleum Science and Engineering, Cilt
29, s.221 238.
Nordlund U. (1999): “FUZZIM: Forward Stratigraphic Modeling Made Simple”, Computers
and Geosciences,Cilt 25, s.449-456.
Oh J., Pradhan B. (2011): “Application of a Neuro-Fuzzy Model to Landslide-Susceptibility
Mapping for Shallow Landslides in a Tropical Hilly Area”, Computers and Geosciences,
Cilt 37, s.264–1276.
Olatunji S. O., Selamat A, Abdulraheem A. (2011): “Modeling the Permeability of Carbonate
Reservoir Using Type-2 Fuzzy Logic Systems”, Computers in Industry, Cilt 62, s.147–
163.
Ouenes A. (2000): “Practical Application of Fuzzy Logic and Neural Networks to Fractured
Reservoir Characterization”,Computers and Geosciences,Cilt 26, s. 953-962.
Park I., Choi J., Lee M. J., Lee. S. (2012): “Application of An Adaptive Neuro-Fuzzy
Inference System to Ground Subsidence Hazard Mapping”, Computers and Geosciences,
Cilt 48, s.228-238
Piotrowsky J. A. (1997): “Subglacial Hydrology in North-Western Germany During the Last
Glaciation: Groundwater Flow, Tunnel Valleys and Hydrologıcal Cycles”, Quaternary
Science Reviews, Cilt. 16, s.169-185.
Rahman M. S., Zahaby K. M. E. (1997): “Probabilistic Liquefaction Risk Analysis Including
Fuzzy Variables”, Soil Dynamics and Earthquake Engineering,Cilt 16, s.63- 79.
Rajabi M., Bohloli B., Ahangar E. G. (2010): “Intelligent Approaches for Prediction of
Compressional, Shear and Stoneley Wave Velocities from Conventional Well Log Data:
A Case Study from the Sarvak Carbonate Reservoir in the Abadan Plain (Southwestern
Iran)”,Computers and Geosciences,Cilt 36, s.647–664.

Thank you for copying data from http://www.arastirmax.com